Expectation of a Matrix-valued Function of an Inverse beta-Wishart Distribution
Expectation of a Matrix-valued Function of an Inverse beta-Wishart Distribution
When iw = 0, the function calculates E[∏j=1r\mboxtr(W−j)fj], where W∼Wmβ(n,S). When iw != 0, the function calculates E[∏j=1r\mboxtr(W−j)fjW−iw].
iwishmom(n, S, f, iw =0, alpha =2)
Arguments
n: The degrees of freedom of the beta-Wishart matrix W
S: The covariance matrix of the beta-Wishart matrix W
f: A vector of nonnegative integers fj that represents the power of \mboxtr(W−j), where j=1,…,r
iw: The power of the inverse beta-Wishart matrix W−1 (0 by default)
alpha: The type of Wishart distribution (α=2/β):
1/2: Quaternion Wishart
1: Complex Wishart
2: Real Wishart (default)
Returns
When iw = 0, it returns E[∏j=1r\mboxtr(W−j)fj]. When iw != 0, it returns E[∏j=1r\mboxtr(W−j)fjW−iw].
Examples
# Example 1: For E[tr(W^{-1})^2] with W ~ W_m^1(n,S),# where n and S are defined below:n <-20S <- matrix(c(25,49,49,109), nrow=2, ncol=2)iwishmom(n, S,2)# iw = 0, for real Wishart distribution# Example 2: For E[tr(W^{-1})^2*tr(W^{-3})W^{-2}] with W ~ W_m^1(n,S),# where n and S are defined below:n <-20S <- matrix(c(25,49,49,109), nrow=2, ncol=2)iwishmom(n, S, c(2,0,1),2,2)# iw = 2, for real Wishart distribution# Example 3: For E[tr(W^{-1})^2*tr(W^{-3})] with W ~ W_m^2(n,S),# where n and S are defined below:# Hermitian S for the complex casen <-20S <- matrix(c(25,49+2i,49-2i,109), nrow=2, ncol=2)iwishmom(n, S, c(2,0,1),0,1)# iw = 0, for complex Wishart distribution# Example 4: For E[tr(W^{-1})*tr(W^{-2})^2*tr(W^{-3})^2*W^{-1}] with W ~ W_m^2(n,S),# where n and S are defined below:n <-30S <- matrix(c(25,49+2i,49-2i,109), nrow=2, ncol=2)iwishmom(n, S, c(1,2,2),1,1)# iw = 1, for complex Wishart distribution