qk_coeff function

Coefficient Matrix Ck\mathcal{C}_k

Coefficient Matrix Ck\mathcal{C}_k

This function computes the coefficient matrix Ck\mathcal{C}_k, which is a matrix of constants that allows us to obtain E[pλ(W)Wr]E[p_{\lambda}(W)W^r], where r+λ=kr+|\lambda|=k and WWmβ(n,Σ)W \sim W_m^{\beta}(n, \Sigma).

qk_coeff(k, alpha = 2)

Arguments

  • k: The order of the Ck\mathcal{C}_k matrix

  • alpha: The type of Wishart distribution (α=2/β\alpha=2/\beta):

    • 1/2: Quaternion Wishart
    • 1: Complex Wishart
    • 2: Real Wishart (default)

Returns

Ck\mathcal{C}_k, a matrix that allows us to obtain E[pλ(W)Wr]E[p_{\lambda}(W)W^r], where r+λ=kr+|\lambda|=k and WWmβ(n,Σ)W \sim W_m^{\beta}(n, \Sigma). The matrix is represented as a 3-dimensional array where each slice along the third dimension represents a coefficient matrix of the polynomial in descending powers of nn.

Examples

# Example 1: qk_coeff(2) # For real Wishart distribution with k = 2 # Example 2: qk_coeff(3, 1) # For complex Wishart distribution with k = 3 # Example 3: qk_coeff(2, 1/2) # For quaternion Wishart distribution with k = 2
  • Maintainer: Raymond Kan
  • License: MIT + file LICENSE
  • Last published: 2024-08-27

Useful links