qkn_coeff function

Inverse of a Coefficient Matrix C~k\tilde{\mathcal{C}}_k

Inverse of a Coefficient Matrix C~k\tilde{\mathcal{C}}_k

This function computes the inverse of the coefficient matrix C~k\tilde{\mathcal{C}}_k

qkn_coeff(k, alpha = 2)

Arguments

  • k: The order of the C~k\tilde{\mathcal{C}}_k matrix

  • alpha: The type of beta-Wishart distribution (α=2/β\alpha=2/\beta):

    • 1/2: Quaternion Wishart
    • 1: Complex Wishart
    • 2: Real Wishart (default)

Returns

Inverse of a coefficient matrix C~k\tilde{\mathcal{C}}_k that allows us to obtain E[pλ(W1)Wr]E[p_{\lambda}(W^{-1})W^{-r}], where r+λ=kr+|\lambda|=k

and W Wmβ(n,Σ)W ~ W_m^{\beta}(n,\Sigma). The matrix is represented as a 3-dimensional array where each slice along the third dimension represents a coefficient matrix of the polynomial in descending powers of n~\tilde{n}.

Examples

# Example 1: qkn_coeff(2) # For real Wishart distribution with k = 2 # Example 2: qkn_coeff(3, 1) # For complex Wishart distribution with k = 3 # Example 3: qkn_coeff(2, 1/2) # For quaternion Wishart distribution with k = 2
  • Maintainer: Raymond Kan
  • License: MIT + file LICENSE
  • Last published: 2024-08-27

Useful links