This function computes the coefficient matrix for C~k for W∼Wmβ(n,Σ).
qkn_coeffr(k, alpha =2)
Arguments
k: The order of the C~k matrix (a positive integer)
alpha: The type of Wishart distribution (α=2/β):
1/2: Quaternion Wishart
1: Complex Wishart
2: Real Wishart (default)
Returns
A list with two elements:
c: A 3-dimensional array containing the coefficient matrices of the numerator of C~k in descending powers of n1, where n1=n−m+1−α.
den: A vector containing the coefficients of the denominator of C~k, in descending powers of n1.
Examples
# Example 1:qkn_coeffr(2)# For real Wishart distribution with k = 2# Example 2:qkn_coeffr(3,1)# For complex Wishart distribution with k = 3# Example 3:qkn_coeffr(2,1/2)# For quaternion Wishart distribution with k = 2