qkn_coeffr function

Coefficient Matrix C~k\tilde{C}_k

Coefficient Matrix C~k\tilde{C}_k

This function computes the coefficient matrix for C~k\tilde{\mathcal{C}}_k for WWmβ(n,Σ)W \sim W_m^{\beta}(n, \Sigma).

qkn_coeffr(k, alpha = 2)

Arguments

  • k: The order of the C~k\tilde{\mathcal{C}}_k matrix (a positive integer)

  • alpha: The type of Wishart distribution (α=2/β\alpha = 2/\beta):

    • 1/2: Quaternion Wishart
    • 1: Complex Wishart
    • 2: Real Wishart (default)

Returns

A list with two elements:

  • c: A 3-dimensional array containing the coefficient matrices of the numerator of C~k\tilde{\mathcal{C}}_k in descending powers of n1n1, where n1=nm+1αn1 = n - m + 1 - \alpha.
  • den: A vector containing the coefficients of the denominator of C~k\tilde{\mathcal{C}}_k, in descending powers of n1n1.

Examples

# Example 1: qkn_coeffr(2) # For real Wishart distribution with k = 2 # Example 2: qkn_coeffr(3, 1) # For complex Wishart distribution with k = 3 # Example 3: qkn_coeffr(2, 1/2) # For quaternion Wishart distribution with k = 2
  • Maintainer: Raymond Kan
  • License: MIT + file LICENSE
  • Last published: 2024-08-27

Useful links