wish_ps function

Coefficient Matrix Hk\mathcal{H}_k

Coefficient Matrix Hk\mathcal{H}_k

This function computes the coefficient matrix Hk\mathcal{H}_k that allows us to compute the expected value of a power-sum symmetric function of WW, where WWmβ(n,Σ)W \sim W_m^{\beta}(n,\Sigma).

wish_ps(k, alpha = 2)

Arguments

  • k: The order of the Hk\mathcal{H}_k matrix

  • alpha: The type of Wishart distribution (α=2/β\alpha = 2/\beta):

    • 1/2: Quaternion Wishart
    • 1: Complex Wishart
    • 2: Real Wishart (default)

Returns

A coefficient matrix Hk\mathcal{H}_k that allows us to compute the expected value of a power-sum symmetric function of WW, where WWmβ(n,Σ)W \sim W_m^{\beta}(n,\Sigma). The matrix is represented as a 3-dimensional array where each slice along the third dimension represents a coefficient matrix of the polynomial in descending powers of nn.

Examples

# Example 1: wish_ps(3) # For real Wishart distribution with k = 3 # Example 2: wish_ps(4, 1) # For complex Wishart distribution with k = 4 # Example 3: wish_ps(2, 1/2) # For quaternion Wishart distribution with k = 2
  • Maintainer: Raymond Kan
  • License: MIT + file LICENSE
  • Last published: 2024-08-27

Useful links