wnl5 function

Old type WinNonlin - Least Square not MLE

Old type WinNonlin - Least Square not MLE

It performs old type Winnonlin regression.

wnl5(Fx, Data, pNames, IE, LB, UB, Error="A", ObjFx=ObjLS)

Arguments

  • Fx: Function for structural model. It should return a vector of the same length to observations.
  • Data: Data table which will be used in Fx. Fx should access this with e$DATA.
  • pNames: Parameter names in the order of Fx arguments
  • IE: Initial estimates of parameters
  • LB: Lower bound for optim function. The default value is 0.
  • UB: Upper bound for optim function. The default value is 1e+06.
  • Error: Error model. One of "POIS" for Poisson error, "P" for proportional error, and others for additive error model.
  • ObjFx: Objective function to be minimized. The default is least square function.

Details

This uses scaled transformed parameters and environment e internally. Here we do not provide standard error. If you want standard error, use nlr.

Returns

  • PE: Point estimates

  • WRSS: Weighted Residual Sum of Square

  • run$m: Count of positive residuals

  • run$n: Count of negative residuals

  • run$run: Count of runs of residuals

  • run$p.value: P value of run test with excluding zero points

  • Objective Function Value: Minimum value of the objective function

  • AIC: Akaike Information Criterion

  • SBC: Schwarz Bayesian Information Criterion

  • Condition Number: Condition number

  • Message: Message from optim.

  • Prediction: Fitted(predicted) values

  • Residuals: Residuals

  • Elapsed Time: Consumed time by minimization

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

tData = Theoph colnames(tData) = c("ID", "BWT", "DOSE", "TIME", "DV") fPK = function(THETA) # Prediction function { DOSE = 320000 # in microgram TIME = e$DATA[,"TIME"] # use data in e$DATA K = THETA[1] Ka = THETA[2] V = THETA[3] Cp = DOSE/V*Ka/(Ka - K)*(exp(-K*TIME) - exp(-Ka*TIME)) return(Cp) } IDs = unique(tData[,"ID"]) nID = length(IDs) for (i in 1:nID) { Data = tData[tData$ID == IDs[i],] Res = wnl5(fPK, Data, pNames=c("k", "ka", "V"), IE=c(0.1, 3, 500)) print(paste("## ID =", i, "##")) print(Res) }