Estimate 3-parameter-logistic model
Estimate the 3PL model using the maximum likelihood estimation
model_3pl_eap_scoring
scores response vectors using the EAP method
model_3pl_map_scoring
scores response vectors using the MAP method
model_3pl_dv_jmle
calculates the first and second derivatives for the joint maximum likelihood estimation
model_3pl_estimate_jmle
estimates the parameters using the joint maximum likelihood estimation (JMLE) method
model_3pl_dv_mmle
calculates the first and second derivatives for the marginal maximum likelihood estimation
model_3pl_estimate_mmle
estimates the parameters using the marginal maximum likelihood estimation (MMLE) method
model_3pl_eap_scoring(u, a, b, c, D = 1.702, prior = c(0, 1), bound = c(-3, 3)) model_3pl_map_scoring(u, a, b, c, D = 1.702, prior = c(0, 1), bound = c(-3, 3), nr_iter = 30, nr_conv = 0.001) model_3pl_dv_Pt(t, a, b, c, D) model_3pl_dv_Pa(t, a, b, c, D) model_3pl_dv_Pb(t, a, b, c, D) model_3pl_dv_Pc(t, a, b, c, D) model_3pl_dv_jmle(dv, u) model_3pl_estimate_jmle(u, t = NA, a = NA, b = NA, c = NA, D = 1.702, iter = 100, conv = 1, nr_iter = 10, nr_conv = 0.001, scale = c(0, 1), bounds_t = c(-3, 3), bounds_a = c(0.01, 2), bounds_b = c(-3, 3), bounds_c = c(0, 0.25), priors = list(t = c(0, 1), a = c(-0.1, 0.2), b = c(0, 1), c = c(4, 20)), decay = 1, debug = FALSE, true_params = NULL) model_3pl_dv_mmle(pdv_fn, u, quad, a, b, c, D) model_3pl_estimate_mmle(u, t = NA, a = NA, b = NA, c = NA, D = 1.702, iter = 100, conv = 1, nr_iter = 10, nr_conv = 0.001, bounds_t = c(-3, 3), bounds_a = c(0.01, 2), bounds_b = c(-3, 3), bounds_c = c(0, 0.25), priors = list(t = c(0, 1), a = c(-0.1, 0.2), b = c(0, 1), c = c(4, 20)), decay = 1, quad_degree = "11", scoring = c("eap", "map"), debug = FALSE, true_params = NULL) model_3pl_fitplot(u, t, a, b, c, D = 1.702, index = NULL, intervals = seq(-3, 3, 0.5), show_points = TRUE)
u
: observed response matrix, 2d matrixa
: discrimination parameters, 1d vector (fixed value) or NA (freely estimate)b
: difficulty parameters, 1d vector (fixed value) or NA (freely estimate)c
: pseudo-guessing parameters, 1d vector (fixed value) or NA (freely estimate)D
: the scaling constant, 1.702 by defaultprior
: the prior distributionnr_iter
: the maximum iterations of newton-raphsonnr_conv
: the convegence criterion for newton-raphsont
: ability parameters, 1d vector (fixed value) or NA (freely estimate)iter
: the maximum iterationsconv
: the convergence criterion of the -2 log-likelihoodscale
: the meand and SD of the theta scale, N(0, 1) for JMLE by defaultbounds_t
: bounds of ability parametersbounds_a
: bounds of discrimination parametersbounds_b
: bounds of difficulty parametersbounds_c
: bounds of guessing parameterspriors
: a list of prior distributionsdecay
: decay ratedebug
: TRUE to print debuggin informationtrue_params
: a list of true parameters for evaluating the estimation accuracypdv_fn
: the function to compute derivatives of P w.r.t the estimating parametersquad_degree
: the number of quadrature pointsscoring
: the scoring method: 'eap' or 'map'index
: the indices of items being plottedintervals
: intervals on the x-axisshow_points
: TRUE to show pointswith(model_3pl_gendata(10, 40), cbind(true=t, est=model_3pl_eap_scoring(u, a, b, c)$t)) with(model_3pl_gendata(10, 40), cbind(true=t, est=model_3pl_map_scoring(u, a, b, c)$t)) ## Not run: # generate data x <- model_3pl_gendata(2000, 40) # free estimation y <- model_3pl_estimate_jmle(x$u, true_params=x) # fix c-parameters y <- model_3pl_estimate_jmle(x$u, c=0, true_params=x) # no priors y <- model_3pl_estimate_jmle(x$u, priors=NULL, iter=30, debug=T) ## End(Not run) ## Not run: # generate data x <- model_3pl_gendata(2000, 40) # free estimation y <- model_3pl_estimate_mmle(x$u, true_params=x) # fix c-parameters y <- model_3pl_estimate_mmle(x$u, c=0, true_params=x) # no priors y <- model_3pl_estimate_mmle(x$u, priors=NULL, iter=30, debug=T) ## End(Not run) with(model_3pl_gendata(1000, 20), model_3pl_fitplot(u, t, a, b, c, index=c(1, 3, 5)))