estimate_gpcm function

Estimate Generalizaed Partial Credit Model

Estimate Generalizaed Partial Credit Model

Estimate the GPCM using the maximum likelihood estimation

model_gpcm_eap_scoring scores response vectors using the EAP method

model_gpcm_map_scoring scores response vectors using maximum a posteriori

model_gpcm_estimate_jmle estimates the parameters using the joint maximum likelihood estimation (JMLE) method

model_gpcm_estimate_mmle estimates the parameters using the marginal maximum likelihood estimation (MMLE) method

model_gpcm_eap_scoring(u, a, b, d, D = 1.702, prior = c(0, 1), bound = c(-3, 3)) model_gpcm_map_scoring(u, a, b, d, D = 1.702, prior = NULL, bound = c(-3, 3), nr_iter = 30, nr_conv = 0.001) model_gpcm_dv_Pt(t, a, b, d, D) model_gpcm_dv_Pa(t, a, b, d, D) model_gpcm_dv_Pb(t, a, b, d, D) model_gpcm_dv_Pd(t, a, b, d, D) model_gpcm_dv_jmle(ix, dvp) model_gpcm_estimate_jmle(u, t = NA, a = NA, b = NA, d = NA, D = 1.702, iter = 100, nr_iter = 10, conv = 1, nr_conv = 0.001, scale = c(0, 1), bounds_t = c(-4, 4), bounds_a = c(0.01, 2), bounds_b = c(-4, 4), bounds_d = c(-4, 4), priors = list(t = c(0, 1), a = c(-0.1, 0.2), b = c(0, 1), d = c(0, 1)), decay = 1, debug = FALSE, true_params = NULL) model_gpcm_dv_mmle(u_ix, quad, pdv) model_gpcm_estimate_mmle(u, t = NA, a = NA, b = NA, d = NA, D = 1.702, iter = 100, nr_iter = 10, conv = 1, nr_conv = 0.001, bounds_t = c(-4, 4), bounds_a = c(0.01, 2), bounds_b = c(-4, 4), bounds_d = c(-4, 4), priors = list(t = c(0, 1), a = c(-0.1, 0.2), b = c(0, 1), d = c(0, 1)), decay = 1, quad_degree = "11", scoring = c("eap", "map"), debug = FALSE, true_params = NULL) model_gpcm_fitplot(u, t, a, b, d, D = 1.702, insert_d0 = NULL, index = NULL, intervals = seq(-3, 3, 0.5), show_points = TRUE)

Arguments

  • u: the observed response matrix, 2d matrix
  • a: discrimination parameters, 1d vector (fixed value) or NA (freely estimate)
  • b: difficulty parameters, 1d vector (fixed value) or NA (freely estimate)
  • d: category parameters, 2d matrix (fixed value) or NA (freely estimate)
  • D: the scaling constant, 1.702 by default
  • prior: the prior distribution
  • nr_iter: the maximum iterations of newton-raphson
  • nr_conv: the convegence criterion for newton-raphson
  • t: ability parameters, 1d vector (fixed value) or NA (freely estimate)
  • ix: the 3d indices
  • dvp: the derivatives of P
  • iter: the maximum iterations
  • conv: the convergence criterion of the -2 log-likelihood
  • scale: the scale of theta parameters
  • bounds_t: bounds of ability parameters
  • bounds_a: bounds of discrimination parameters
  • bounds_b: bounds of location parameters
  • bounds_d: bounds of category parameters
  • priors: a list of prior distributions
  • decay: decay rate
  • debug: TRUE to print debuggin information
  • true_params: a list of true parameters for evaluating the estimation accuracy
  • quad_degree: the number of quadrature points
  • scoring: the scoring method: 'eap' or 'map'
  • insert_d0: insert an initial category value
  • index: the indices of items being plotted
  • intervals: intervals on the x-axis
  • show_points: TRUE to show points

Examples

with(model_gpcm_gendata(10, 40, 3), cbind(true=t, est=model_gpcm_eap_scoring(u, a, b, d)$t)) with(model_gpcm_gendata(10, 40, 3), cbind(true=t, est=model_gpcm_map_scoring(u, a, b, d)$t)) ## Not run: # generate data x <- model_gpcm_gendata(1000, 40, 3) # free calibration y <- model_gpcm_estimate_jmle(x$u, true_params=x) # no priors y <- model_gpcm_estimate_jmle(x$u, priors=NULL, true_params=x) ## End(Not run) ## Not run: # generate data x <- model_gpcm_gendata(1000, 40, 3) # free estimation y <- model_gpcm_estimate_mmle(x$u, true_params=x) # no priors y <- model_gpcm_estimate_mmle(x$u, priors=NULL, true_params=x) ## End(Not run) with(model_gpcm_gendata(1000, 20, 3), model_gpcm_fitplot(u, t, a, b, d, index=c(1, 3, 5)))
  • Maintainer: Xiao Luo
  • License: GPL (>= 3)
  • Last published: 2019-03-22