Estimate Generalizaed Partial Credit Model
Estimate the GPCM using the maximum likelihood estimation
model_gpcm_eap_scoring
scores response vectors using the EAP method
model_gpcm_map_scoring
scores response vectors using maximum a posteriori
model_gpcm_estimate_jmle
estimates the parameters using the joint maximum likelihood estimation (JMLE) method
model_gpcm_estimate_mmle
estimates the parameters using the marginal maximum likelihood estimation (MMLE) method
model_gpcm_eap_scoring(u, a, b, d, D = 1.702, prior = c(0, 1), bound = c(-3, 3)) model_gpcm_map_scoring(u, a, b, d, D = 1.702, prior = NULL, bound = c(-3, 3), nr_iter = 30, nr_conv = 0.001) model_gpcm_dv_Pt(t, a, b, d, D) model_gpcm_dv_Pa(t, a, b, d, D) model_gpcm_dv_Pb(t, a, b, d, D) model_gpcm_dv_Pd(t, a, b, d, D) model_gpcm_dv_jmle(ix, dvp) model_gpcm_estimate_jmle(u, t = NA, a = NA, b = NA, d = NA, D = 1.702, iter = 100, nr_iter = 10, conv = 1, nr_conv = 0.001, scale = c(0, 1), bounds_t = c(-4, 4), bounds_a = c(0.01, 2), bounds_b = c(-4, 4), bounds_d = c(-4, 4), priors = list(t = c(0, 1), a = c(-0.1, 0.2), b = c(0, 1), d = c(0, 1)), decay = 1, debug = FALSE, true_params = NULL) model_gpcm_dv_mmle(u_ix, quad, pdv) model_gpcm_estimate_mmle(u, t = NA, a = NA, b = NA, d = NA, D = 1.702, iter = 100, nr_iter = 10, conv = 1, nr_conv = 0.001, bounds_t = c(-4, 4), bounds_a = c(0.01, 2), bounds_b = c(-4, 4), bounds_d = c(-4, 4), priors = list(t = c(0, 1), a = c(-0.1, 0.2), b = c(0, 1), d = c(0, 1)), decay = 1, quad_degree = "11", scoring = c("eap", "map"), debug = FALSE, true_params = NULL) model_gpcm_fitplot(u, t, a, b, d, D = 1.702, insert_d0 = NULL, index = NULL, intervals = seq(-3, 3, 0.5), show_points = TRUE)
u
: the observed response matrix, 2d matrixa
: discrimination parameters, 1d vector (fixed value) or NA (freely estimate)b
: difficulty parameters, 1d vector (fixed value) or NA (freely estimate)d
: category parameters, 2d matrix (fixed value) or NA (freely estimate)D
: the scaling constant, 1.702 by defaultprior
: the prior distributionnr_iter
: the maximum iterations of newton-raphsonnr_conv
: the convegence criterion for newton-raphsont
: ability parameters, 1d vector (fixed value) or NA (freely estimate)ix
: the 3d indicesdvp
: the derivatives of Piter
: the maximum iterationsconv
: the convergence criterion of the -2 log-likelihoodscale
: the scale of theta parametersbounds_t
: bounds of ability parametersbounds_a
: bounds of discrimination parametersbounds_b
: bounds of location parametersbounds_d
: bounds of category parameterspriors
: a list of prior distributionsdecay
: decay ratedebug
: TRUE to print debuggin informationtrue_params
: a list of true parameters for evaluating the estimation accuracyquad_degree
: the number of quadrature pointsscoring
: the scoring method: 'eap' or 'map'insert_d0
: insert an initial category valueindex
: the indices of items being plottedintervals
: intervals on the x-axisshow_points
: TRUE to show pointswith(model_gpcm_gendata(10, 40, 3), cbind(true=t, est=model_gpcm_eap_scoring(u, a, b, d)$t)) with(model_gpcm_gendata(10, 40, 3), cbind(true=t, est=model_gpcm_map_scoring(u, a, b, d)$t)) ## Not run: # generate data x <- model_gpcm_gendata(1000, 40, 3) # free calibration y <- model_gpcm_estimate_jmle(x$u, true_params=x) # no priors y <- model_gpcm_estimate_jmle(x$u, priors=NULL, true_params=x) ## End(Not run) ## Not run: # generate data x <- model_gpcm_gendata(1000, 40, 3) # free estimation y <- model_gpcm_estimate_mmle(x$u, true_params=x) # no priors y <- model_gpcm_estimate_mmle(x$u, priors=NULL, true_params=x) ## End(Not run) with(model_gpcm_gendata(1000, 20, 3), model_gpcm_fitplot(u, t, a, b, d, index=c(1, 3, 5)))