model_gpcm_prob(t, a, b, d, D =1.702, insert_d0 =NULL)model_gpcm_info(t, a, b, d, D =1.702, insert_d0 =NULL)model_gpcm_lh(u, t, a, b, d, D =1.702, insert_d0 =NULL, log =FALSE)model_gpcm_gendata(n_p, n_i, n_c, t =NULL, a =NULL, b =NULL, d =NULL, D =1.702, sort_d =FALSE, t_dist = c(0,1), a_dist = c(-0.1,0.2), b_dist = c(0,0.8), missing =NULL)model_gpcm_rescale(t, a, b, d, param = c("t","b"), mean =0, sd =1)model_gpcm_plot(a, b, d, D =1.702, insert_d0 =NULL, type = c("prob","info"), by_item =FALSE, total =FALSE, xaxis = seq(-6,6,0.1))model_gpcm_plot_loglh(u, a, b, d, D =1.702, insert_d0 =NULL, xaxis = seq(-6,6,0.1), show_mle =FALSE)
Arguments
t: ability parameters, 1d vector
a: discrimination parameters, 1d vector
b: item location parameters, 1d vector
d: item category parameters, 2d vector
D: the scaling constant, 1.702 by default
insert_d0: insert an initial category value
u: the observed scores (starting from 0), 2d matrix
log: TRUE to return log-likelihood
n_p: the number of people to be generated
n_i: the number of items to be generated
n_c: the number of score categories
sort_d: TRUE to sort d parameters for each item
t_dist: parameters of the normal distribution used to generate t-parameters
a_dist: parameters of the lognormal distribution parameters of a-parameters
b_dist: parameters of the normal distribution used to generate b-parameters
missing: the proportion or number of missing responses
param: the parameter of the new scale: 't' or 'b'
mean: the mean of the new scale
sd: the standard deviation of the new scale
type: the type of plot, prob for ICC and info for IIFC