model_grm function

Graded Response Model

Graded Response Model

Routine functions for the GRM

model_grm_prob(t, a, b, D = 1.702, raw = FALSE) model_grm_info(t, a, b, D = 1.702) model_grm_lh(u, t, a, b, D = 1.702, log = FALSE) model_grm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL, D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0, 0.8), missing = NULL) model_grm_rescale(t, a, b, param = c("t", "b"), mean = 0, sd = 1) model_grm_plot(a, b, D = 1.702, type = c("prob", "info"), by_item = FALSE, total = FALSE, xaxis = seq(-6, 6, 0.1), raw = FALSE) model_grm_plot_loglh(u, a, b, D = 1.702, xaxis = seq(-6, 6, 0.1), show_mle = FALSE)

Arguments

  • t: ability parameters, 1d vector
  • a: discrimination parameters, 1d vector
  • b: item location parameters, 2d matrix
  • D: the scaling constant, 1.702 by default
  • raw: TRUE to return P*
  • u: the observed scores (starting from 0), 2d matrix
  • log: TRUE to return log-likelihood
  • n_p: the number of people to be generated
  • n_i: the number of items to be generated
  • n_c: the number of score categories
  • t_dist: parameters of the normal distribution used to generate t-parameters
  • a_dist: parameters of the lognormal distribution used to generate a-parameters
  • b_dist: parameters of the normal distribution used to generate b-parameters
  • missing: the proportion or number of missing responses
  • param: the parameter of the new scale: 't' or 'b'
  • mean: the mean of the new scale
  • sd: the standard deviation of the new scale
  • type: the type of plot, prob for ICC and info for IIFC
  • by_item: TRUE to combine categories
  • total: TRUE to sum values over items
  • xaxis: the values of x-axis
  • show_mle: TRUE to print maximum likelihood values

Examples

with(model_grm_gendata(10, 5, 3), model_grm_prob(t, a, b)) with(model_grm_gendata(10, 5, 3), model_grm_info(t, a, b)) with(model_grm_gendata(10, 5, 3), model_grm_lh(u, t, a, b)) model_grm_gendata(10, 5, 3) model_grm_gendata(10, 5, 3, missing=.1) with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='prob')) with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='info', by_item=TRUE)) with(model_grm_gendata(5, 50, 3), model_grm_plot_loglh(u, a, b))
  • Maintainer: Xiao Luo
  • License: GPL (>= 3)
  • Last published: 2019-03-22