model_grm_prob(t, a, b, D =1.702, raw =FALSE)model_grm_info(t, a, b, D =1.702)model_grm_lh(u, t, a, b, D =1.702, log =FALSE)model_grm_gendata(n_p, n_i, n_c, t =NULL, a =NULL, b =NULL, D =1.702, t_dist = c(0,1), a_dist = c(-0.1,0.2), b_dist = c(0,0.8), missing =NULL)model_grm_rescale(t, a, b, param = c("t","b"), mean =0, sd =1)model_grm_plot(a, b, D =1.702, type = c("prob","info"), by_item =FALSE, total =FALSE, xaxis = seq(-6,6,0.1), raw =FALSE)model_grm_plot_loglh(u, a, b, D =1.702, xaxis = seq(-6,6,0.1), show_mle =FALSE)
Arguments
t: ability parameters, 1d vector
a: discrimination parameters, 1d vector
b: item location parameters, 2d matrix
D: the scaling constant, 1.702 by default
raw: TRUE to return P*
u: the observed scores (starting from 0), 2d matrix
log: TRUE to return log-likelihood
n_p: the number of people to be generated
n_i: the number of items to be generated
n_c: the number of score categories
t_dist: parameters of the normal distribution used to generate t-parameters
a_dist: parameters of the lognormal distribution used to generate a-parameters
b_dist: parameters of the normal distribution used to generate b-parameters
missing: the proportion or number of missing responses
param: the parameter of the new scale: 't' or 'b'
mean: the mean of the new scale
sd: the standard deviation of the new scale
type: the type of plot, prob for ICC and info for IIFC
by_item: TRUE to combine categories
total: TRUE to sum values over items
xaxis: the values of x-axis
show_mle: TRUE to print maximum likelihood values
Examples
with(model_grm_gendata(10,5,3), model_grm_prob(t, a, b))with(model_grm_gendata(10,5,3), model_grm_info(t, a, b))with(model_grm_gendata(10,5,3), model_grm_lh(u, t, a, b))model_grm_gendata(10,5,3)model_grm_gendata(10,5,3, missing=.1)with(model_grm_gendata(10,5,3), model_grm_plot(a, b, type='prob'))with(model_grm_gendata(10,5,3), model_grm_plot(a, b, type='info', by_item=TRUE))with(model_grm_gendata(5,50,3), model_grm_plot_loglh(u, a, b))