A Bayesian Semiparametric Factor Analysis Model for Subtype Identification (Clustering)
A Bayesian semiparametric factor analysis model for subtype identifica...
Function to calculate the similarity matrix based on the cluster membe...
Internal function to calculate the density of multivariate normal dist...
Internal function to sample from multivariate normal distribution.
Internal function to find matched index.
Internal function to sample cluster membership indicator
Internal function to sample eta
Internal function to sample Lambda
Internal function to sample cluster-specific means of eta
Internal function to sample rho
Internal function to sample gene-specific variances
Internal function to sample variances for eta
Gene expression profiles are commonly utilized to infer disease subtypes and many clustering methods can be adopted for this task. However, existing clustering methods may not perform well when genes are highly correlated and many uninformative genes are included for clustering. To deal with these challenges, we develop a novel clustering method in the Bayesian setting. This method, called BCSub, adopts an innovative semiparametric Bayesian factor analysis model to reduce the dimension of the data to a few factor scores for clustering. Specifically, the factor scores are assumed to follow the Dirichlet process mixture model in order to induce clustering.