MIRES0.1.1 package

Measurement Invariance Assessment Using Random Effects Models and Shrinkage

bflt

Compute BF(Less than)

datagen_uni

Unidimensional data generation.

ddirichletprocess_spike

Create Stan-based spike-mixture DP based density estimation function.

ddirichletprocess_stan

Create Stan-based density function.

ddirichletprocess

Create dirichletprocess (exponential) based density function.

dhmre_pairwise

Implied density for pairwise differences given HMRE prior.

dhmre

Density for hmre prior on RE SDs.

dlogspline

Create logspline-based density function.

dot-combine_RHS

Combine all unique RHS entries into one RHS formula.

dot-formula_lhs

Get the one-length LHS of formula as string.

dot-formula_names

Get terms from formula list

dot-formula_rhs

Get RHS of formula as character vector.

dot-hdi

Compute Highest Posterior Density intervals.

dot-indicator_spec

Generates indicator spec list.

dot-pairwise_diff_single

Outer subtraction for given params across MCMC samples.

dot-parse_formula

Parse formula (list).

dot-sample_diff_labels

Generate labels for all differences of vector.

dot-sample_diff

Compute all differences of vector.

generateData

Paper simulation function (For historical purposes)

genStickBreakPi

Stick-breaking function.

MIRES-package

The 'MIRES' package.

mires

Fit mixed effects measurement model for invariance assessment.

pairwise

Pairwise comparisons of random parameters.

posterior_density_funs_sigmas

Create marginal posterior density function approximations for random e...

predict_DP

Prediction for DP density estimation models.

print.mires

Print function for mires objects.

print.summary.mires

Print method for MIRES summary objects.

ranef.mires

Extract random effects of each group from MIRES model.

rhmre

Random sampling from hmre prior on RE SDs.

simulate_DP

Generate Truncated Dirichlet Process Mixture.

split_stannames

Split stan names into a list of parameter names (char vec) and (col-na...

summary.mires

Summary method for mires object.

tidy_stanpars

Tidy up a vector of stan names into a data frame.

Estimates random effect latent measurement models, wherein the loadings, residual variances, intercepts, latent means, and latent variances all vary across groups. The random effect variances of the measurement parameters are then modeled using a hierarchical inclusion model, wherein the inclusion of the variances (i.e., whether it is effectively zero or non-zero) is informed by similar parameters (of the same type, or of the same item). This additional hierarchical structure allows the evidence in favor of partial invariance to accumulate more quickly, and yields more certain decisions about measurement invariance. Martin, Williams, and Rast (2020) <doi:10.31234/osf.io/qbdjt>.

  • Maintainer: Stephen Martin
  • License: MIT + file LICENSE
  • Last published: 2025-05-04