PKNCA0.11.0 package

Perform Pharmacokinetic Non-Compartmental Analysis

assert_number_between

Confirm that a value is greater than another value

assert_numeric_between

Confirm that a value is greater than another value

assert_PKNCAdata

Assert that an object is a PKNCAdata object

auc_integrate

Support function for AUC integration

business.mean

Generate functions to do the named function (e.g. mean) applying the b...

check.conversion

Check that the conversion to a data type does not change the number of...

check.interval.deps

Take in a single row of an interval specification and return that row ...

check.interval.specification

Check the formatting of a calculation interval specification data fram...

checkProvenance

Check the hash of an object to confirm its provenance.

getGroups.PKNCAconc

Get the groups (right hand side after the | from a PKNCA object).

getIndepVar

Get the independent variable (right hand side of the formula) from a P...

mutate.PKNCAresults

dplyr mutate-based modification for PKNCA

normalize_exclude

Normalize the exclude column by setting blanks to NA

parse_formula_to_cols

Convert a formula representation to the columns for input data

pk.business

Run any function with a maximum missing fraction of X and 0s possibly ...

pk.calc.ae

Calculate amount excreted (typically in urine or feces)

pk.calc.aucabove

Calculate the AUC above a given concentration

pk.calc.cl

Calculate the (observed oral) clearance

pk.calc.clast.obs

Determine the last observed concentration above the limit of quantific...

pk.calc.clr

Calculate renal clearance

pk.calc.cmax

Determine maximum observed PK concentration

pk.calc.count_conc

Count the number of concentration measurements in an interval

pk.calc.cstart

Determine the concentration at the beginning of the interval

pk.calc.ctrough

Determine the trough (end of interval) concentration

pk.calc.deg.fluc

Determine the degree of fluctuation

pk.calc.dn

Determine dose normalized NCA parameter

pk.calc.f

Calculate the absolute (or relative) bioavailability

pk.calc.fe

Calculate fraction excreted (typically in urine or feces)

pk.calc.half.life

Compute the half-life and associated parameters

pk.calc.kel

Calculate the elimination rate (Kel)

pk.calc.mrt.md

Calculate the mean residence time (MRT) for multiple-dose data with no...

pk.calc.mrt

Calculate the mean residence time (MRT) for single-dose data or linear...

pk.calc.ptr

Determine the peak-to-trough ratio

pknca_units_table

Create a unit assignment and conversion table

roundString

Round a value to a defined number of digits printing out trailing zero...

setAttributeColumn

Add an attribute to an object where the attribute is added as a name t...

setDuration

Set the duration of dosing or measurement

setExcludeColumn

Set the exclude parameter on an object

setRoute

Set the dosing route

signifString

Round a value to a defined number of significant digits printing out t...

sort.interval.cols

Sort the interval columns by dependencies.

sparse_auc_weight_linear

Calculate the weight for sparse AUC calculation with the linear-trapez...

sparse_mean

Calculate the mean concentration at all time points for use in sparse ...

sparse_pk_attribute

Set or get a sparse_pk object attribute

sparse_to_dense_pk

Extract the mean concentration-time profile as a data.frame

summary.PKNCAdata

Summarize a PKNCAdata object showing important details about the conce...

assert_conc_time

Verify that concentration measurements are valid

assert_dosetau

Assert that a value is a dosing interval

assert_intervaltime_single

Assert that an interval is accurately defined as an interval, and retu...

assert_lambdaz

Assert that a lambda.z value is valid

choose_interval_method

Choose how to interpolate, extrapolate, or integrate data in each conc...

formula.PKNCAconc

Extract the formula from a PKNCAconc object.

geomean

Compute the geometric mean, sd, and CV

get.best.model

Extract the best model from a list of models using the AIC.

get.first.model

Get the first model from a list of models

get.interval.cols

Get the columns that can be used in an interval specification

get.parameter.deps

Get all columns that depend on a parameter

get_impute_method

Get the impute function from either the intervals column or from the m...

getAttributeColumn

Retrieve the value of an attribute column.

getColumnValueOrNot

Get the value from a column in a data frame if the value is a column t...

getDataName

Get the name of the element containing the data for the current object...

choose.auc.intervals

Choose intervals to compute AUCs from time and dosing information

add.interval.col

Add columns for calculations within PKNCA intervals

add_impute_to_intervals

Add the imputation column to the intervals, if it is not already there

addProvenance

Add a hash and associated information to enable checking object proven...

adj.r.squared

Calculate the adjusted r-squared value

any_sparse_dense_in_interval

Determine if there are any sparse or dense calculations requested with...

as.data.frame.PKNCAresults

Extract the parameter results from a PKNCAresults and return them as a...

as_PKNCAconc

Convert an object into a PKNCAconc object

as_sparse_pk

Generate a sparse_pk object

assert_aucmethod

Assert that a value is a valid AUC method

getDepVar

Get the dependent variable (left hand side of the formula) from a PKNC...

clean.conc.blq

Handle BLQ values in the concentration measurements as requested by th...

clean.conc.na

Handle NA values in the concentration measurements as requested by the...

cov_holder

Calculate the covariance for two time points with sparse sampling

defunct

The following functions are defunct

exclude

Exclude data points or results from calculations or summarization.

exclude_nca

Exclude NCA parameters based on examining the parameter set.

filter.PKNCAresults

dplyr filtering for PKNCA

find.tau

Find the repeating interval within a vector of doses

findOperator

Find the first occurrence of an operator in a formula and return the l...

fit_half_life

Perform the half-life fit given the data. The function simply fits the...

group_by.PKNCAresults

dplyr grouping for PKNCA

group_vars.PKNCAconc

Get grouping variables for a PKNCA object

inner_join.PKNCAresults

dplyr joins for PKNCA

interp.extrap.conc

Interpolate concentrations between measurements or extrapolate concent...

interp_extrap_conc_method

Interpolate or extrapolate concentrations using the provided method

is_sparse_pk

Is a PKNCA object used for sparse PK?

model.frame.PKNCAconc

Extract the columns used in the formula (in order) from a PKNCAconc or...

reexports

Objects exported from other packages

pk.calc.aucint

Calculate the AUC over an interval with interpolation and/or extrapola...

pk.calc.auciv

Calculate AUC for intravenous dosing

pk.calc.aucpext

Calculate the AUC percent extrapolated

pk.calc.auxc

A compute the Area Under the (Moment) Curve

pk.calc.c0

Estimate the concentration at dosing time for an IV bolus dose.

pk.calc.cav

Calculate the average concentration during an interval.

pk.calc.ceoi

Determine the concentration at the end of infusion

roundingSummarize

During the summarization of PKNCAresults, do the rounding of values ba...

pk.calc.sparse_auc

Calculate AUC and related parameters using sparse NCA methods

pk.calc.swing

Determine the PK swing

pk.calc.thalf.eff

Calculate the effective half-life

pk.calc.time_above

Determine time at or above a set value

pk.calc.tlag

Determine the observed lag time (time before the first concentration a...

pk.calc.tlast

Determine time of last observed concentration above the limit of quant...

pk.calc.tmax

Determine time of maximum observed PK concentration

pk.calc.totdose

Extract the dose used for calculations

pk.calc.vss

Calculate the steady-state volume of distribution (Vss)

pk.calc.vz

Calculate the terminal volume of distribution (Vz)

pk.nca.interval

Compute all PK parameters for a single concentration-time data set

pk.nca.intervals

Compute NCA for multiple intervals

pk.nca

Compute NCA parameters for each interval for each subject.

pk.tss.data.prep

Clean up the time to steady-state parameters and return a data frame f...

pk.tss.monoexponential.individual

A helper function to estimate individual and single outputs for monoex...

pk.tss.monoexponential.population

A helper function to estimate population and popind outputs for monoex...

pk.tss.monoexponential

Compute the time to steady state using nonlinear, mixed-effects modeli...

pk.tss

Compute the time to steady-state (tss)

pk.tss.stepwise.linear

Compute the time to steady state using stepwise test of linear trend

pk_nca_result_to_df

Convert the grouping info and list of results for each group into a re...

PKNCA.choose.option

Choose either the value from an option list or the current set value f...

PKNCA.options.describe

Describe a PKNCA.options option by name.

PKNCA.options

Set default options for PKNCA functions

PKNCA

Compute noncompartmental pharmacokinetics

PKNCA.set.summary

Define how NCA parameters are summarized.

pknca_find_units_param

Find NCA parameters with a given unit type

PKNCA_impute_fun_list

Separate out a vector of PKNCA imputation methods into a list of funct...

PKNCA_impute_method

Methods for imputation of data with PKNCA

pknca_unit_conversion

Perform unit conversion (if possible) on PKNCA results

pknca_units_add_paren

Add parentheses to a unit value, if needed

PKNCAconc

Create a PKNCAconc object

PKNCAdata

Create a PKNCAdata object.

PKNCAdose

Create a PKNCAdose object

PKNCAresults

Generate a PKNCAresults object

print.PKNCAconc

Print and/or summarize a PKNCAconc or PKNCAdose object.

print.PKNCAdata

Print a PKNCAdata object

print.provenance

Print the summary of a provenance object

print.summary_PKNCAresults

Print the results summary

summary.PKNCAresults

Summarize PKNCA results

superposition

Compute noncompartmental superposition for repeated dosing

time_calc

Times relative to an event (typically dosing)

tss.monoexponential.generate.formula

A helper function to generate the formula and starting values for the ...

var_sparse_auc

Calculate the variance for the AUC of sparsely sampled PK

Compute standard Non-Compartmental Analysis (NCA) parameters for typical pharmacokinetic analyses and summarize them.

  • Maintainer: Bill Denney
  • License: AGPL-3
  • Last published: 2024-06-19