SelectBoost.gamlss0.2.2 package

Stability-Selection via Correlated Resampling for 'GAMLSS' Models

AICc_gamlss

AICc for a gamlss fit

autoboost_gamlss

AutoBoost for GAMLSS (SelectBoost-style)

check_fast_vs_generic

Numerical check: fast vs generic deviance log-likelihood

confidence_functionals

Confidence functionals from a c0 grid

confidence_table

Compute SelectBoost-like confidence table across c0

cv_deviance_sb

K-fold deviance for an sb_gamlss configuration

dot-family_defaults

Reasonable defaults

dot-family_tolerance

Per-family numeric tolerance for equality checks

dot-gen_family

Try to generate values for a family

effect_plot

One-variable effect plot from an sb_gamlss (or gamlss) fit

fast_vs_generic_ll

Compare fast vs generic deviance log-likelihood evaluation

fastboost_gamlss

FastBoost for GAMLSS (lightweight stability selection)

get_density_fun

Get a density function for a gamlss family

knockoff_filter_mu

Knockoff filter for mu (approximate group control)

knockoff_filter_param

Knockoff filter for sigma/nu/tau (approximate group control)

loglik_gamlss_newdata

Log-likelihood (sum) on newdata given a gamlss fit

plot_sb_gamlss

Plot selection frequencies for sb_gamlss

plot_stability_curves

Plot stability curves p(c0) for selected terms

plot.sb_confidence

Plot confidence functionals

plot.SelectBoost_gamlss_grid

Plot summary for sb_gamlss_c0_grid

plot.SelectBoost_gamlss

Plot selection proportions for a single sb_gamlss

predict_params

Predict distribution parameters on newdata

sb_gamlss_c0_grid

Stability curves over a c0 grid for sb_gamlss

sb_gamlss

SelectBoost for GAMLSS (stability selection)

SelectBoost_gamlss

SelectBoost-style wrapper for GAMLSS

SelectBoost.gamlss-package

SelectBoost.gamlss: Stability-Selection via Correlated Resampling for ...

selection_table

Selection table accessor

tune_sb_gamlss

Tune select engines/penalties via a small stability run

Extends the 'SelectBoost' approach to Generalized Additive Models for Location, Scale and Shape (GAMLSS). Implements bootstrap stability-selection across parameter-specific formulas (mu, sigma, nu, tau) via gamlss::stepGAIC(). Includes optional standardization of predictors and helper functions for corrected AIC calculation. More details can be found in Bertrand and Maumy (2024) <https://hal.science/hal-05352041> that highlights correlation-aware resampling to improve variable selection for GAMLSS and quantile regression when predictors are numerous and highly correlated.

  • Maintainer: Frederic Bertrand
  • License: GPL-3
  • Last published: 2025-11-25