SeqNet1.1.3 package

Generate RNA-Seq Data from Gene-Gene Association Networks

get_network_modules

Get a list of modules from the network

get_node_names.default

Get node names

get_node_names.matrix

Get node names

get_node_names.network

Get node names

get_node_names.network_module

Get node names

get_node_names

Get node names

get_sigma.default

Get the covariance matrix

get_sigma.matrix

Get the covariance matrix

get_sigma.network

Get the covariance matrix

get_sigma.network_module

Get the covariance matrix

get_sigma

Get the covariance matrix

get_summary_for_node

Get summary for a node in the network.

heatmap_network

Plot heatmap representation of a network

is_PD

Internal function to check if a matrix is positive definite

is_symmetric_cpp

C++ implementation to check if a matrix is symmetric

is_weighted.default

Check if an object is weighted

is_weighted.matrix

Check if an object is weighted

is_weighted.network

Check if an object is weighted

is_weighted.network_module

Check if an object is weighted

is_weighted

Check if an object is weighted

perturb_network

Perturbs the connections in a network

plot.network

Plot function for 'network' object

plot.network_module

Plot function for 'network_module' object.

plot.network_plot

Plot function for 'network_plot' class

add_modules_to_network

Internal function for adding a set of modules to the network

add_random_module_to_network

Adds a random module of a given size to the network

all_networks_contain_same_modules

Internal function to check if a list of networks all contain the same ...

all_networks_contain_same_nodes

Internal function to check if a list of networks all contain the same ...

as_single_module

Collapses all modules in network into a single module

check_adjacency_cpp

C++ implementation to check if a matrix is an adjacency matrix

components_in_adjacency

C++ implementation to obtain connected components in a graph.

connect_module_structure

Connect disconnected components in an adjacency matrix

create_cytoscape_file

Create an edge table file for Cytoscape

create_empty_module

Create a module

create_empty_network

Create a network object.

create_module_from_adjacency_matrix

Create a module from an adjacency matrix

create_module_from_association_matrix

Create a module from an association matrix

create_modules_for_network

Randomly sample subsets of genes for each module

create_network_from_adjacency_matrix

Create a network object from an adjacency matrix

create_network_from_association_matrix

Create a network object from an association matrix

create_network_from_modules

Create a network object.

dzinb

The Zero-Inflated Negative Binomial Distribution

ecdf_cpp

C++ implementation of empirical CDF

edges_from_adjacency_cpp

C++ implementation for obtaining an edge list from adjacency matrix

est_params_from_reference

Estimate ZINB parameters from reference data

gen_gaussian

Generate observations from a Gaussian graphical model.

gen_partial_correlations

Generate partial correlations for a list of networks.

gen_rnaseq

Generate RNA-seq data from an underlying network

gen_zinb

Generate ZINB counts from an underlying network

get_adjacency_matrix.default

Get adjacency matrix

get_adjacency_matrix.matrix

Get adjacency matrix

get_adjacency_matrix.network

Get adjacency matrix

get_adjacency_matrix.network_module

Get adjacency matrix

get_adjacency_matrix

Get adjacency matrix

get_association_matrix.default

Get association matrix

get_association_matrix.matrix

Get association matrix

get_association_matrix.network

Get association matrix

get_association_matrix.network_module

Get association matrix

get_association_matrix

Get association matrix

get_degree_distribution

Get the degree distribution for a network.

get_edge_weights_from_module

Get edge weights.

get_layout_for_modules

Internal function used to create coordinates based on a set of modules

get_network_arguments

Internal function used to extract 'network' objects from argument list...

get_network_characteristics

Characteristics of the network topology

plot_gene_pair

Scatter plot of two gene expressions

plot_modules

Visualize a network and its modules

plot_network

Visualize a network

plot_network_diff

Plot the difference between two networks

plot_network_sim

Plot the similarity between two networks

print.network

Print function for 'network' object.

print.network_module

Print function for 'network_module' object.

print.network_plot

Print function for 'network_plot' class

pzinb

The Zero-Inflated Negative Binomial Distribution

qzinb

The Zero-Inflated Negative Binomial Distribution

random_module

Create a random module

random_module_structure

Create a random network structure for a module

random_network

Create a network object.

remove_connections.default

Remove connections in a network

remove_connections.matrix

Remove connections in a network

remove_connections.network

Remove connections in a network

remove_connections.network_module

Remove connections in a network

remove_connections

Remove connections in a network

remove_connections_to_node.default

Remove connections to a node

remove_connections_to_node.matrix

Remove connections to a node

remove_connections_to_node.network

Remove connections to a node

remove_connections_to_node.network_module

Remove connections to a node

remove_connections_to_node

Remove connections to a node

remove_weights.default

Removes the weights of all connections

remove_weights.matrix

Removes the weights of all connections

remove_weights.network

Removes the weights of all connections

remove_weights.network_module

Removes the weights of all connections

remove_weights

Removes the weights of all connections

replace_module_in_network

Internal function for replacing a module in the network

rewire_connections.default

Rewire connections

rewire_connections.matrix

Rewire connections

rewire_connections.network

Rewire connections

rewire_connections.network_module

Rewire connections

rewire_connections

Rewire connections

rewire_connections_to_node.default

Rewire connections to a node

rewire_connections_to_node.matrix

Rewire connections to a node

rewire_connections_to_node.network

Rewire connections to a node

rewire_connections_to_node.network_module

Rewire connections to a node

rewire_connections_to_node

Rewire connections to a node

ring_lattice_cpp

C++ implementation for creating a ring lattice

rzinb

The Zero-Inflated Negative Binomial Distribution

sample_link_nodes

Sample link nodes for new module

sample_module_nodes

Sample nodes for new module

sample_reference_data

Sample genes from reference dataset

set_module_edges

Internal function used to set the edges in a module

set_module_name

Set the name for a module

set_module_weights

Internal function to set the connection weights for a module

set_node_names

Set the node names in a network

update_module_with_random_weights

Generate small-world network structure for module

Methods to generate random gene-gene association networks and simulate RNA-seq data from them, as described in Grimes and Datta (2021) <doi:10.18637/jss.v098.i12>. Includes functions to generate random networks of any size and perturb them to obtain differential networks. Network objects are built from individual, overlapping modules that represent pathways. The resulting network has various topological properties that are characteristic of gene regulatory networks. RNA-seq data can be generated such that the association among gene expression profiles reflect the underlying network. A reference RNA-seq dataset can be provided to model realistic marginal distributions. Plotting functions are available to visualize a network, compare two networks, and compare the expression of two genes across multiple networks.

  • Maintainer: Tyler Grimes
  • License: GPL-2 | GPL-3
  • Last published: 2021-07-09