brms.mmrm1.1.1 package

Bayesian MMRMs using 'brms'

brm_archetype_average_cells

Cell-means-like time-averaged archetype

brm_archetype_average_effects

Treatment effect time-averaged archetype

brm_archetype_cells

Cell means archetype

brm_archetype_effects

Treatment effect archetype

brm_archetype_successive_cells

Cell-means-like successive differences archetype

brm_archetype_successive_effects

Treatment-effect-like successive differences archetype

brm_data_change

Convert to change from baseline.

brm_data_chronologize

Chronologize a dataset

brm_data

Create and preprocess an MMRM dataset.

brm_formula_sigma

Formula for standard deviation parameters

brm_formula

Model formula

brm_marginal_data

Marginal summaries of the data.

brm_marginal_draws_average

Average marginal MCMC draws across time points.

brm_marginal_draws

MCMC draws from the marginal posterior of an MMRM

brm_marginal_grid

Marginal names grid.

brm_marginal_probabilities

Marginal probabilities on the treatment effect for an MMRM.

brm_marginal_summaries

Summary statistics of the marginal posterior of an MMRM.

brm_model

Fit an MMRM.

brm_plot_compare

Visually compare the marginals of multiple models and/or datasets.

brm_plot_draws

Visualize posterior draws of marginals.

brm_prior_archetype

Informative priors for fixed effects in archetypes

brm_prior_label

Label a prior with levels in the data.

brm_prior_simple

Simple prior for a brms MMRM

brm_prior_template

Label template for informative prior archetypes

brm_recenter_nuisance

Recenter nuisance variables

brm_simulate_categorical

Append simulated categorical covariates

brm_simulate_continuous

Append simulated continuous covariates

brm_simulate_outline

Start a simulated dataset

brm_simulate_prior

Prior predictive draws.

brm_simulate_simple

Simple MMRM simulation.

brm_simulate

Deprecated: simulate an MMRM.

brm_transform_marginal

Marginal mean transformation

brms.mmrm-package

brms.mmrm: Bayesian MMRMs using brms

summary.brms_mmrm_archetype

Summarize an informative prior archetype.

summary.brms_mmrm_transform_marginal

Summarize marginal transform.

The mixed model for repeated measures (MMRM) is a popular model for longitudinal clinical trial data with continuous endpoints, and 'brms' is a powerful and versatile package for fitting Bayesian regression models. The 'brms.mmrm' R package leverages 'brms' to run MMRMs, and it supports a simplified interfaced to reduce difficulty and align with the best practices of the life sciences. References: Bürkner (2017) <doi:10.18637/jss.v080.i01>, Mallinckrodt (2008) <doi:10.1177/009286150804200402>.

  • Maintainer: William Michael Landau
  • License: MIT + file LICENSE
  • Last published: 2024-10-02