marked1.2.8 package

Mark-Recapture Analysis for Survival and Abundance Estimation

cjs.hessian

Compute variance-covariance matrix for fitted CJS model

cjs.initial

Computes starting values for CJS p and Phi parameters

cjs.lnl

Likelihood function for Cormack-Jolly-Seber model

cjs_admb

Fitting function for CJS models

cjs_delta

HMM Initial state distribution functions

cjs_gamma

HMM Transition matrix functions

cjs_tmb

Fitting function for CJS models

coef.crm

Extract coefficients

compute_matrices

Compute HMM matrices

backward_prob

Computes backward probabilities

cjs.accumulate

Accumulates common capture history values

compute_real

Compute estimates of real parameters

convert.link.to.real

Convert link values to real parameters

create.dm

Creates a design matrix for a parameter

create.dmdf

Creates a dataframe with all the design data for a particular paramete...

create.fixed.matrix

Create parameters with fixed matrix

create.links

Creates a 0/1 vector for real parameters with sin link

crm

Capture-recapture model fitting function

crm.wrapper

Automation of model runs

deriv_inverse.link

Derivatives of inverse of link function (internal use)

dmat_hsmm2hmm

Create expanded state-dependent observation matrix for HMM from HSMM

fix.parameters

Fixing real parameters in crm models

function.wrapper

Utility extract functions

global_decode

Global decoding of HMM

hmmDemo

HMM computation demo functions

HMMLikelihood

Hidden Markov Model likelihood functions

hsmm2hmm

Compute transition matrix for HMM from HSMM

initiate_pi

Setup fixed values for pi in design data

inverse.link

Inverse link functions (internal use)

js.accumulate

Accumulates common capture history values

js.hessian

Compute variance-covariance matrix for fitted JS model

js.lnl

Likelihood function for Jolly-Seber model using Schwarz-Arnason POPAN ...

js

Fitting function for Jolly-Seber model using Schwarz-Arnason POPAN for...

local_decode

Local decoding of HMM

make.design.data

Create design dataframes for crm

merge_design.covariates

Merge time (occasion) and/or group specific covariates into design dat...

mixed.model.admb

Mixed effect model contstruction

mscjs

Fitting function for Multistate CJS models

mscjs_tmb

Fitting function for Multistate CJS models with TMB

msld_tmb

Fitting function for Multistate CJS live-dead models with TMB

mvms_design_data

Multivariate Multistate (mvms) Design Data

mvms_dmat

HMM Observation Probability matrix functions

mvmscjs

Fitting function for Multivariate Multistate CJS with uncertainty mode...

mvmscjs_tmb

TMB version: Fitting function for Multivariate Multistate CJS with unc...

omega

Compute 1 to k-step transition proportions

Phi.mean

Various utility parameter summary functions

predict.crm

Compute estimates of real parameters

print.crm

Print model results

print.crmlist

Print model table from model list

probitCJS

Perform MCMC analysis of a CJS model

proc.form

Mixed effect model formula parserParses a mixed effect model in the lm...

process.ch

Process release-recapture history data

process.data

Process encounter history dataframe for MARK analysis

R_HMMLikelihood

Hidden Markov Model Functions

resight.matrix

Various utility functions

set.fixed

Set fixed real parameter values in ddl

set.initial

Set initial values

set_mvms

Multivariate Multistate (mvms) Specification

set_scale

Scaling functions

setup.model

Defines model specific parameters (internal use)

setup.parameters

Setup parameter structure specific to model (internal use)

setup_admb

ADMB setup

setup_tmb

TMB setup

simHMM

Simulates data from Hidden Markov Model

smsld_tmb

Fitting function for Multistate CJS live-dead models with TMB

splitCH

Split/collapse capture histories

valid.parameters

Determine validity of parameters for a model (internal use)

Functions for fitting various models to capture-recapture data including mixed-effects Cormack-Jolly-Seber(CJS) and multistate models and the multi-variate state model structure for survival estimation and POPAN structured Jolly-Seber models for abundance estimation. There are also Hidden Markov model (HMM) implementations of CJS and multistate models with and without state uncertainty and a simulation capability for HMM models.

  • Maintainer: Jeff Laake
  • License: GPL (>= 2)
  • Last published: 2023-10-19