mixAK5.8 package

Multivariate Normal Mixture Models and Mixtures of Generalized Linear Mixed Models Including Model Based Clustering

autolayout

Automatic layout for several plots in one figure

BLA

Best linear approximation with respect to the mean square error (theor...

BsBasis

B-spline basis

cbplot

Plot a function together with its confidence/credible bands

Dirichlet

Dirichlet distribution

fitted.GLMMMCMC

Fitted profiles in the GLMM model

generatePermutations

Generate all permutations of (1, ..., K)

getProfiles

Individual longitudinal profiles of a given variable

GLMMlongitDA

Discriminant analysis for longitudinal profiles based on fitted GLMM's

GLMMlongitDA2

Discriminant analysis for longitudinal profiles based on fitted GLMM's

GLMMMCMC

MCMC estimation of a (multivariate) generalized linear mixed model wit...

GLMMMCMCdata

Data manipulation for the GLMM_MCMC function

GLMMMCMCifit

Initial (RE)ML fits for the GLMM_MCMC function

GLMMMCMCinit.alpha

Handle init.alpha or init2.alpha argument of GLMM_MCMC function

GLMMMCMCinit.b

Handle init.b or init2.b argument of GLMM_MCMC function

GLMMMCMCinit.eps

Handle init.eps or init2.eps argument of GLMM_MCMC function

GLMMMCMCprior.alpha

Handle prior.alpha argument of GLMM_MCMC function

GLMMMCMCprior.b

Handle prior.eps argument of GLMM_MCMC function

GLMMMCMCprior.eps

Handle prior.eps argument of GLMM_MCMC function

GLMMMCMCscale.b

Handle scale.b argument of GLMM_MCMC function

GLMMMCMCwrapper

Wrapper to the GLMM_MCMC main simulation.

MatMPpinv

Moore-Penrose pseudoinverse of a squared matrix

MatSqrt

Square root of a matrix

MVN

Multivariate normal distribution

MVNmixture

Mixture of (multivariate) normal distributions

MVT

Multivariate Student t distribution

NMixChainComp

Chains for mixture parameters

NMixChainsDerived

Create MCMC chains derived from previously sampled values

NMixCluster

Clustering based on the MCMC output of the mixture model

NMixEM

EM algorithm for a homoscedastic normal mixture

NMixMCMC

MCMC estimation of (multivariate) normal mixtures with possibly censor...

NMixMCMCdata

Data manipulation for the NMixMCMC function

NMixMCMCinitr

Initial component allocations for the NMixMCMC function

NMixMCMCinity

Initial values of censored observations for the NMixMCMC function

NMixMCMCwrapper

Wrapper to the NMixMCMC main simulation.

NMixPlugCondDensJoint2

Pairwise bivariate conditional densities: plug-in estimate

NMixPlugCondDensMarg

Univariate conditional densities: plug-in estimate

NMixPlugDA

Discriminant analysis based on plug-in estimates from the mixture mode...

NMixPlugDensJoint2

Pairwise bivariate densities: plug-in estimate

NMixPlugDensMarg

Marginal (univariate) densities: plug-in estimate

NMixPredCDFMarg

Marginal (univariate) predictive cumulative distribution function

NMixPredCondCDFMarg

Univariate conditional predictive cumulative distribution function

NMixPredCondDensJoint2

Pairwise bivariate conditional predictive densities

NMixPredCondDensMarg

Univariate conditional predictive density

NMixPredDA

Discriminant analysis based on MCMC output from the mixture model

NMixPredDensJoint2

Pairwise bivariate predictive density

NMixPredDensMarg

Marginal (univariate) predictive density

NMixPseudoGOF

Pseudo goodness-of-fit test for a normal mixture model

NMixRelabel

Re-labeling the MCMC output of the mixture model

NMixRelabelAlgorithm

Argument manipulation for the NMixRelabel functions

NMixSummComp

Summary for the mixture components

plot.NMixPlugCondDensJoint2

Plot computed pairwise bivariate conditional densities (plug-in estima...

plot.NMixPlugCondDensMarg

Plot computed univariate conditional densities (plug-in estimate)

plot.NMixPlugDensJoint2

Plot computed marginal pairwise bivariate densities (plug-in estimate)

plot.NMixPlugDensMarg

Plot computed marginal predictive densities

plot.NMixPredCDFMarg

Plot computed marginal predictive cumulative distribution functions

plot.NMixPredCondCDFMarg

Plot computed univariate conditional predictive cumulative distributio...

plot.NMixPredCondDensJoint2

Plot computed predictive pairwise bivariate conditional densities

plot.NMixPredCondDensMarg

Plot computed univariate conditional predictive densities

plot.NMixPredDensJoint2

Plot computed marginal pairwise bivariate predictive densities

plot.NMixPredDensMarg

Plot computed marginal predictive densities

plotProfiles

Plot individual longitudinal profiles

rRotationMatrix

Random rotation matrix

rSamplePair

Sample a pair (with replacement)

SP2Rect

Conversion of a symmetric matrix stored in a packed format (lower tria...

summaryDiff

Posterior summary statistics for a difference of two quantities

TMVN

Truncated multivariate normal distribution

TNorm

Truncated normal distribution

tracePlots

Traceplots for selected parameters

Wishart

Wishart distribution

Y2T

Transform fitted distribution of Y=trans(T) into distribution of T

Contains a mixture of statistical methods including the MCMC methods to analyze normal mixtures. Additionally, model based clustering methods are implemented to perform classification based on (multivariate) longitudinal (or otherwise correlated) data. The basis for such clustering is a mixture of multivariate generalized linear mixed models. The package is primarily related to the publications Komárek (2009, Comp. Stat. and Data Anal.) <doi:10.1016/j.csda.2009.05.006> and Komárek and Komárková (2014, J. of Stat. Soft.) <doi:10.18637/jss.v059.i12>. It also implements methods published in Komárek and Komárková (2013, Ann. of Appl. Stat.) <doi:10.1214/12-AOAS580>, Hughes, Komárek, Bonnett, Czanner, García-Fiñana (2017, Stat. in Med.) <doi:10.1002/sim.7397>, Jaspers, Komárek, Aerts (2018, Biom. J.) <doi:10.1002/bimj.201600253> and Hughes, Komárek, Czanner, García-Fiñana (2018, Stat. Meth. in Med. Res) <doi:10.1177/0962280216674496>.