parsnip1.4.0 package

A Common API to Modeling and Analysis Functions

add_on_exports

Functions required for parsnip-adjacent packages

add_rowindex

Add a column of row numbers to a data frame

augment

Augment data with predictions

auto_ml

Automatic Machine Learning

autoplot.model_fit

Create a ggplot for a model object

bag_mars

Ensembles of MARS models

bag_mlp

Ensembles of neural networks

bag_tree

Ensembles of decision trees

bart-internal

Developer functions for predictions via BART models

bart

Bayesian additive regression trees (BART)

boost_tree

Boosted trees

C5_rules

C5.0 rule-based classification models

C5.0_train

Boosted trees via C5.0

case_weights_allowed

Determine if case weights are used

case_weights

Using case weights with parsnip

censoring_weights

Calculations for inverse probability of censoring weights (IPCW)

check_empty_ellipse

Check to ensure that ellipses are empty

condense_control

Condense control object into strictly smaller control object

control_parsnip

Control the fit function

convert_helpers

Helper functions to convert between formula and matrix interface

convert_stan_interval

Convenience function for intervals

ctree_train

A wrapper function for conditional inference tree models

cubist_rules

Cubist rule-based regression models

decision_tree

Decision trees

descriptors

Data Set Characteristics Available when Fitting Models

details_auto_ml_h2o

Automatic machine learning via h2o

details_bag_mars_earth

Bagged MARS via earth

details_bag_mlp_nnet

Bagged neural networks via nnet

details_bag_tree_C5.0

Bagged trees via C5.0

details_bag_tree_rpart

Bagged trees via rpart

details_bart_dbarts

Bayesian additive regression trees via dbarts

details_boost_tree_C5.0

Boosted trees via C5.0

details_boost_tree_h2o

Boosted trees via h2o

details_boost_tree_lightgbm

Boosted trees via lightgbm

details_boost_tree_mboost

Boosted trees

details_boost_tree_spark

Boosted trees via Spark

details_boost_tree_xgboost

Boosted trees via xgboost

details_C5_rules_C5.0

C5.0 rule-based classification models

details_cubist_rules_Cubist

Cubist rule-based regression models

details_decision_tree_C5.0

Decision trees via C5.0

details_decision_tree_partykit

Decision trees via partykit

details_decision_tree_rpart

Decision trees via CART

details_decision_tree_spark

Decision trees via Spark

details_discrim_flexible_earth

Flexible discriminant analysis via earth

details_discrim_linear_MASS

Linear discriminant analysis via MASS

details_discrim_linear_mda

Linear discriminant analysis via flexible discriminant analysis

details_discrim_linear_sda

Linear discriminant analysis via James-Stein-type shrinkage estimation

details_discrim_linear_sparsediscrim

Linear discriminant analysis via regularization

details_discrim_quad_MASS

Quadratic discriminant analysis via MASS

details_discrim_quad_sparsediscrim

Quadratic discriminant analysis via regularization

details_discrim_regularized_klaR

Regularized discriminant analysis via klaR

details_gen_additive_mod_mgcv

Generalized additive models via mgcv

details_linear_reg_brulee

Linear regression via brulee

details_linear_reg_gee

Linear regression via generalized estimating equations (GEE)

details_linear_reg_glm

Linear regression via glm

details_linear_reg_glmer

Linear regression via generalized mixed models

details_linear_reg_glmnet

Linear regression via glmnet

details_linear_reg_gls

Linear regression via generalized least squares

details_linear_reg_h2o

Linear regression via h2o

details_linear_reg_keras

Linear regression via keras/tensorflow

details_linear_reg_lm

Linear regression via lm

details_linear_reg_lme

Linear regression via mixed models

details_linear_reg_lmer

Linear regression via mixed models

details_linear_reg_quantreg

Linear quantile regression via the quantreg package

details_linear_reg_spark

Linear regression via spark

details_linear_reg_stan_glmer

Linear regression via hierarchical Bayesian methods

details_linear_reg_stan

Linear regression via Bayesian Methods

details_logistic_reg_brulee

Logistic regression via brulee

details_logistic_reg_gee

Logistic regression via generalized estimating equations (GEE)

details_logistic_reg_glm

Logistic regression via glm

details_logistic_reg_glmer

Logistic regression via mixed models

details_logistic_reg_glmnet

Logistic regression via glmnet

details_logistic_reg_h2o

Logistic regression via h2o

details_logistic_reg_keras

Logistic regression via keras

details_logistic_reg_LiblineaR

Logistic regression via LiblineaR

details_logistic_reg_spark

Logistic regression via spark

details_logistic_reg_stan_glmer

Logistic regression via hierarchical Bayesian methods

details_logistic_reg_stan

Logistic regression via stan

details_mars_earth

Multivariate adaptive regression splines (MARS) via earth

details_mlp_brulee_two_layer

Multilayer perceptron via brulee with two hidden layers

details_mlp_brulee

Multilayer perceptron via brulee

details_mlp_h2o

Multilayer perceptron via h2o

details_mlp_keras

Multilayer perceptron via keras

details_mlp_nnet

Multilayer perceptron via nnet

details_multinom_reg_brulee

Multinomial regression via brulee

details_multinom_reg_glmnet

Multinomial regression via glmnet

details_multinom_reg_h2o

Multinomial regression via h2o

details_multinom_reg_keras

Multinomial regression via keras

details_multinom_reg_nnet

Multinomial regression via nnet

details_multinom_reg_spark

Multinomial regression via spark

details_naive_Bayes_h2o

Naive Bayes models via naivebayes

details_naive_Bayes_klaR

Naive Bayes models via klaR

details_naive_Bayes_naivebayes

Naive Bayes models via naivebayes

details_nearest_neighbor_kknn

K-nearest neighbors via kknn

details_pls_mixOmics

Partial least squares via mixOmics

details_poisson_reg_gee

Poisson regression via generalized estimating equations (GEE)

details_poisson_reg_glm

Poisson regression via glm

details_poisson_reg_glmer

Poisson regression via mixed models

details_poisson_reg_glmnet

Poisson regression via glmnet

details_poisson_reg_h2o

Poisson regression via h2o

details_poisson_reg_hurdle

Poisson regression via pscl

details_poisson_reg_stan_glmer

Poisson regression via hierarchical Bayesian methods

details_poisson_reg_stan

Poisson regression via stan

details_poisson_reg_zeroinfl

Poisson regression via pscl

details_proportional_hazards_glmnet

Proportional hazards regression

details_proportional_hazards_survival

Proportional hazards regression

details_rand_forest_aorsf

Oblique random survival forests via aorsf

details_rand_forest_grf

Generalized random forests via grf

details_rand_forest_h2o

Random forests via h2o

details_rand_forest_partykit

Random forests via partykit

details_rand_forest_randomForest

Random forests via randomForest

details_rand_forest_ranger

Random forests via ranger

details_rand_forest_spark

Random forests via spark

details_rule_fit_h2o

RuleFit models via h2o

details_rule_fit_xrf

RuleFit models via xrf

details_survival_reg_flexsurv

Parametric survival regression

details_survival_reg_flexsurvspline

Flexible parametric survival regression

details_survival_reg_survival

Parametric survival regression

details_svm_linear_kernlab

Linear support vector machines (SVMs) via kernlab

details_svm_linear_LiblineaR

Linear support vector machines (SVMs) via LiblineaR

details_svm_poly_kernlab

Polynomial support vector machines (SVMs) via kernlab

details_svm_rbf_kernlab

Radial basis function support vector machines (SVMs) via kernlab

discrim_flexible

Flexible discriminant analysis

discrim_linear

Linear discriminant analysis

discrim_quad

Quadratic discriminant analysis

discrim_regularized

Regularized discriminant analysis

doc-tools

Tools for documenting engines

dot-extract_surv_status

Extract survival status

dot-extract_surv_time

Extract survival time

dot-get_prediction_column_names

Obtain names of prediction columns for a fitted model or workflow

dot-model_param_name_key

Translate names of model tuning parameters

eval_args

Evaluate parsnip model arguments

extension-check-helpers

Model Specification Checking:

extract-parsnip

Extract elements of a parsnip model object

fit_control

Control the fit function

fit

Fit a Model Specification to a Dataset

format-internals

Internal functions that format predictions

gen_additive_mod

Generalized additive models (GAMs)

get_model_env

Working with the parsnip model environment

glance.model_fit

Construct a single row summary "glance" of a model, fit, or other obje...

glm_grouped

Fit a grouped binomial outcome from a data set with case weights

glmnet_helpers_prediction

Organize glmnet predictions

glmnet_helpers

Helper functions for checking the penalty of glmnet models

glmnet-details

Technical aspects of the glmnet model

has_multi_predict

Tools for models that predict on sub-models

keras_activations

Activation functions for neural networks in keras

keras_mlp

Simple interface to MLP models via keras

keras_predict_classes

Wrapper for keras class predictions

knit_engine_docs

Knit engine-specific documentation

linear_reg

Linear regression

list_md_problems

Locate and show errors/warnings in engine-specific documentation

logistic_reg

Logistic regression

make_call

Make a parsnip call expression

make_classes

Prepend a new class

mars

Multivariate adaptive regression splines (MARS)

matrix_to_quantile_pred

Reformat quantile predictions

max_mtry_formula

Determine largest value of mtry from formula. This function potentiall...

maybe_matrix

Fuzzy conversions

min_cols

Execution-time data dimension checks

mlp

Single layer neural network

model_fit

Model Fit Objects

model_formula

Formulas with special terms in tidymodels

model_printer

Print helper for model objects

model_spec

Model Specifications

multi_predict

Model predictions across many sub-models

multinom_reg

Multinomial regression

naive_Bayes

Naive Bayes models

nearest_neighbor

K-nearest neighbors

null_model

Null model

nullmodel

Fit a simple, non-informative model

other_predict

Other predict methods.

parsnip_addin

Start an RStudio Addin that can write model specifications

parsnip_update

Updating a model specification

parsnip-package

parsnip

pls

Partial least squares (PLS)

poisson_reg

Poisson regression models

predict.model_fit

Model predictions

prepare_data

Prepare data based on parsnip encoding information

proportional_hazards

Proportional hazards regression

rand_forest

Random forest

reexports

Objects exported from other packages

repair_call

Repair a model call object

req_pkgs

Determine required packages for a model

required_pkgs.model_spec

Determine required packages for a model

rule_fit

RuleFit models

set_args

Change elements of a model specification

set_engine

Declare a computational engine and specific arguments

set_new_model

Tools to Register Models

set_tf_seed

Set seed in R and TensorFlow at the same time

show_call

Print the model call

show_engines

Display currently available engines for a model

sparse_data

Using sparse data with parsnip

stan_conf_int

Wrapper for stan confidence intervals

surv_reg

Parametric survival regression

survival_reg

Parametric survival regression

svm_linear

Linear support vector machines

svm_poly

Polynomial support vector machines

svm_rbf

Radial basis function support vector machines

tidy._elnet

tidy methods for glmnet models

tidy._LiblineaR

tidy methods for LiblineaR models

tidy.model_fit

Turn a parsnip model object into a tidy tibble

tidy.nullmodel

Tidy method for null models

translate

Resolve a Model Specification for a Computational Engine

type_sum.model_spec

Succinct summary of parsnip object

update_model_info_file

Save information about models

varying_args

Determine varying arguments

varying

A placeholder function for argument values

xgb_train

Boosted trees via xgboost

A common interface is provided to allow users to specify a model without having to remember the different argument names across different functions or computational engines (e.g. 'R', 'Spark', 'Stan', 'H2O', etc).

  • Maintainer: Max Kuhn
  • License: MIT + file LICENSE
  • Last published: 2025-12-01