spdesign0.0.5 package

Designing Stated Preference Experiments

calculate_s_error

S-error

clean_utility

Cleans the utility expression

coef.spdesign

Generic for extracting the vector of priors

contains_dummies

Check whether the utility function contains dummy coded variables

cor

Correlation

cycle

Cycling of attribute levels

define_base_x_j

Define base x_j

extract_all_names

Extract all names

extract_attribute_names

Extract attribute names

extract_distribution

Extract distributions

extract_level_occurrence

Extract the frequency of levels

extract_named_values

Extracts the named values of the utility function

extract_param_distribution

Extract the parameter distribution

extract_param_names

Extract parameter names

extract_prior_distribution

Extract the prior distribution

extract_specified

Extract specified

extract_unparsed_values

Extract unparsed named values of the utilitiy function

extract_values

Extract the value argument(s)

federov

Find a design using a modified Federov algorithm

fits_lvl_occurrences

Test whether a design candidate fits the constraints imposed by the le...

full_factorial

Generate the full factorial

print_efficiency_criteria

Creates a printable version of the efficiency criteria

print_initial_header

Prints the initial header for the table of results

relabel

Relabeling of attribute levels

remove_all_brackets

Removes all brackets

remove_prior

Removes the parameter from the utility string

remove_round_brackets

Remove round bracket

remove_square_brackets

Remove square bracket

remove_whitespace

Remove all white spaces

rep_cols

Repeat columns

rep_rows

Repeat rows

vcov.spdesign

Extract the variance co-variance matrix

attribute_levels

Generic for getting the attributes and levels from the utility functio...

attribute_names

Generic for getting the attribute names

transform_lognormal

Transform to the lognormal distribution

transform_normal

Transform to the normal distribution

transform_triangular

Transform to the triangular distribution

transform_uniform

Transform to the uniform distribution

update_utility

Update the utility function

utility_formula

Create formulas from the utility functions

expand_attribute_levels

Expand the list of attributes and levels to the "wide" format

all_priors_and_levels_specified

Check whether all priors and attributes have specified levels

any_duplicates

Check whether any priors or attributes are specified with a value more...

attribute_level_balance

Check whether we can achieve attribute level balance

block

Block the design

calculate_a_error

A-error

calculate_c_error

C-error

calculate_d_error

D-error

calculate_efficiency_criteria

Calculate efficiency criteria

calculate_efficiency

Calculate efficiency

make_pseudo_random

Make pseudo random draws

define_x_j

Define x_j

derive_vcov_mnl

Derive the variance covariance matrix for the MNL model

derive_vcov_rpl

Derive the variance covariance matrix for the RPL model

derive_vcov

Derive the variance covariance matrix of the design

digitize

Expand the sequence of integers

dot-onAttach

Print package startup message

dummy_names

Find the position of the dummy coded attributes

evaluate_design_candidate

Evaluate the design candidate

exclude

Exclude rows from the candidate set

generate_design

Generate an efficient experimental design

generate_rsc_candidate

Generates a candidate for the RSC algorithm

has_bayesian_prior

Tests whether the utility expression contains Bayesian priors

has_random_parameter

Tests whether the utility expression contains random parameters

is_balanced

Tests whether a utility function is balanced

level_balance

Print level balance of your design

lvl_occurrences

Attribute level occurrence lookup tables

make_draws

Make random draws

make_mlhs

Make Modified Latin Hypercube Draws

make_scrambled_halton

Make scrambled Halton draws

make_scrambled_sobol

Make scrambled sobol draws

make_standard_halton

Wrapper for halton()

make_standard_sobol

Make sobol draws

min_lvl_occurrence

Find minimum level occurrences

nlvls

Find the number of levels

normal

Evaluating a distribution

occurrences

Extract or set attribute level occurrences

prepare_priors

Prepare the list of priors

print_iteration_information

Prints iteration information

print.spdesign

A generic function for printing an 'spdesign' object

priors

Generic for extracting the vector of priors

probabilities_mnl

Calculate the MNL probabilities

probabilities

Calculate the probabilities of the design

radical_inverse

Compute the radical inverse

random_design_candidate

Create a random design_object candidate

random

Make a random design

reexports

Objects exported from other packages

too_small

Check if the design is too small

rsc

Make a design candidate based on the rsc algorithm

set_default_level_occurrence

Sets the default level occurrence in an attribute level balanced desig...

set_default_options

Validate design opt

shuffle

Shuffle the order of points in the unit interval.

spdesign-package

spdesign: Designing Stated Preference Experiments

summary.spdesign

Create a summary of the experimental design

swap

Swapping of attribute

transform_distribution

Transform distribution

Contemporary software commonly used to design stated preference experiments are expensive and the code is closed source. This is a free software package with an easy to use interface to make flexible stated preference experimental designs using state-of-the-art methods. For an overview of stated choice experimental design theory, see e.g., Rose, J. M. & Bliemer, M. C. J. (2014) in Hess S. & Daly. A. <doi:10.4337/9781781003152>. The package website can be accessed at <https://spdesign.edsandorf.me>. We acknowledge funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant INSPiRE (Grant agreement ID: 793163).

  • Maintainer: Erlend Dancke Sandorf
  • License: CC BY-SA 4.0
  • Last published: 2024-10-18