MBNMAdose0.4.3 package

Dose-Response MBNMA Models

add_index

Add arm indices and agent identifiers to a dataset

calc.edx

Calculates values for EDx from an Emax model, the dose at which x% of ...

changepd

Update model fit statistics depending on calculation for pD

check.network

Check if all nodes in the network are connected (identical to function...

cumrank

Plot cumulative ranking curves from MBNMA models

default.priors

Sets default priors for JAGS model code

demax

Emax dose-response function

devdev

Dev-dev plot for comparing deviance contributions from two models

devplot

Plot deviance contributions from an MBNMA model

dexp

Exponential dose-response function

dfpoly

Fractional polynomial dose-response function

ditp

Integrated Two-Component Prediction (ITP) function

dloglin

Log-linear (exponential) dose-response function

dmulti

Agent-specific dose-response function

dnonparam

Non-parameteric dose-response functions

dpoly

Polynomial dose-response function

DR.comparisons

Adds placebo comparisons for dose-response relationship

drop.comp

Drop treatments from multi-arm (>2) studies for node-splitting

drop.disconnected

Drop studies that are not connected to the network reference treatment

dspline

Spline dose-response functions

duser

User-defined dose-response function

fitplot

Plot fitted values from MBNMA model

gen.parameters.to.save

Automatically generate parameters to save for a dose-response MBNMA mo...

genspline

Generates spline basis matrices for fitting to dose-response function

get.prior

Get current priors from JAGS model code

get.relative

Calculates league table of effects between treatments in MBNMA and/or ...

getjagsdata

Prepares data for JAGS

inconsistency.loops

Identify comparisons in loops that fulfill criteria for node-splitting

mbnma.comparisons

Identify unique comparisons within a network

mbnma.network

Create an mbnma.network object

mbnma.nodesplit

Node-splitting model for testing consistency at the treatment level us...

mbnma.run

Run MBNMA dose-response models

mbnma.update

Update MBNMA to monitor deviance nodes in the model

mbnma.validate.data

Validates that a dataset fulfills requirements for MBNMA

mbnma.write

Write MBNMA dose-response model JAGS code

MBNMAdose-package

MBNMAdose for dose-response Model-Based Network Meta-Analysis

nma.nodesplit

Node-splitting model for testing consistency at the treatment-level

nma.run

Run an NMA model

norm2lnorm

Convert normal distribution parameters to corresponding log-normal dis...

pDcalc

Calculate plugin pD from a JAGS model with univariate likelihood for s...

pipe

Pipe operator

plot.mbnma.predict

Plots predicted responses from a dose-response MBNMA model

plot.mbnma.rank

Plot histograms of rankings from MBNMA models

plot.mbnma

Forest plot for results from dose-response MBNMA models

predict.mbnma

Predict responses for different doses of agents in a given population ...

print.mbnma.network

Print mbnma.network information to the console

print.mbnma.predict

Print summary information from an mbnma.predict object

print.mbnma.rank

Prints summary information about an mbnma.rank object

print.nma.nodesplit

Prints summary results from an nma.nodesplit object

print.nodesplit

Prints summary results from a nodesplit object

print.relative.array

Print posterior medians (95% credible intervals) for table of relative...

rank.mbnma.predict

Rank predicted doses of different agents

rank.mbnma

Rank parameter estimates

rank

Set rank as a method

rank.relative.array

Rank relative effects obtained between specific doses

recode.agent

Assigns agent or class variables numeric identifiers

ref.synth

Synthesise single arm dose = 0 / placebo studies to estimate E0

rescale.link

Rescale data depending on the link function provided

summary.mbnma.network

Print summary mbnma.network information to the console

summary.mbnma.predict

Produces a summary data frame from an mbnma.predict object

summary.mbnma.rank

Generates summary data frames for an mbnma.rank object

summary.mbnma

Print summary of MBNMA results to the console

summary.nma.nodesplit

Generates a summary data frame for nma.nodesplit objects

summary.nodesplit

Generates a summary data frame for nodesplit objects

Fits Bayesian dose-response model-based network meta-analysis (MBNMA) that incorporate multiple doses within an agent by modelling different dose-response functions, as described by Mawdsley et al. (2016) <doi:10.1002/psp4.12091>. By modelling dose-response relationships this can connect networks of evidence that might otherwise be disconnected, and can improve precision on treatment estimates. Several common dose-response functions are provided; others may be added by the user. Various characteristics and assumptions can be flexibly added to the models, such as shared class effects. The consistency of direct and indirect evidence in the network can be assessed using unrelated mean effects models and/or by node-splitting at the treatment level.