MetricGraph1.5.0 package

Random Fields on Metric Graphs

augment.graph_lme

Augment data with information from a graph_lme object

bru_mapper.inla_metric_graph_spde

Metric graph 'inlabru' mapper

drop_na.metric_graph_data

A version of tidyr::drop_na() function for datasets on metric graphs

exp_covariance

Exponential covariance function

filter.metric_graph_data

A version of dplyr::filter() function for datasets on metric graphs

gg_df.metric_graph_spde_result

Data frame for metric_graph_spde_result objects to be used in 'ggplot2...

glance.graph_lme

Glance at a graph_lme object

graph_bru_process_data

Prepare data frames or data lists to be used with 'inlabru' in metric ...

graph_components

Connected components of metric graph

graph_data_spde

Data extraction for 'spde' models

graph_lgcp_sim

Simulation of log-Gaussian Cox processes driven by Whittle-Matérn fiel...

graph_lme

Metric graph linear mixed effects models

graph_spde_basis

Deprecated - Observation/prediction matrices for 'SPDE' models

graph_spde_make_A

Deprecated - Observation/prediction matrices for 'SPDE' models

graph_spde

'INLA' implementation of Whittle-Matérn fields for metric graphs

graph_starting_values

Starting values for random field models on metric graphs

lgcp_graph

Create a log-Gaussian Cox process model for metric graphs

linnet.to.graph

Convert a linnet object to a metric graph object

logo_lines

Create lines for package name

make_Q_euler

Space-time precision operator Euler discretization

make_Q_spacetime

Space-time precision operator discretization

metric_graph

Metric graph

MetricGraph-package

Gaussian processes on metric graphs

mutate.metric_graph_data

A version of dplyr::mutate() function for datasets on metric graphs

pipe

Pipe operator

plot.graph_bru_pred

Plot of predicted values with 'inlabru'

plot.graph_bru_proc_pred

Plot of processed predicted values with 'inlabru'

posterior_crossvalidation

Cross-validation for graph_lme models assuming observations at the v...

predict.graph_lme

Prediction for a mixed effects regression model on a metric graph

predict.inla_metric_graph_spde

Predict method for 'inlabru' fits on Metric Graphs

predict.rspde_metric_graph

Predict method for 'inlabru' fits on Metric Graphs for 'rSPDE' models

process_rspde_predictions

Process predictions of rspde_metric_graph objects obtained by using ...

psp.to.graph

Convert a psp object to a metric graph object

sample_spde

Samples a Whittle-Matérn field on a metric graph

select.metric_graph_data

A version of dplyr::select() function for datasets on metric graphs

selected_inv

Selected Inverse Calculation

simulate_spacetime

space-time simulation based on implicit Euler discretization in time

simulate.graph_lme

Simulation of models on metric graphs

spde_covariance

Covariance function for Whittle-Matérn fields

spde_metric_graph_result

Metric graph SPDE result extraction from 'INLA' estimation results

spde_precision

Precision matrix for Whittle-Matérn fields

spde_variance

Variancefor Whittle-Matérn fields

stlpp.to.graph

Convert an stlpp object to a metric graph object

summarise.metric_graph_data

A version of dplyr::summarise() function for datasets on metric grap...

summary.graph_lme

Summary Method for graph_lme Objects

summary.metric_graph_spde_result

Summary for posteriors of field parameters for an inla_rspdemodel fr...

summary.metric_graph

Summary Method for metric_graph Objects

Facilitates creation and manipulation of metric graphs, such as street or river networks. Further facilitates operations and visualizations of data on metric graphs, and the creation of a large class of random fields and stochastic partial differential equations on such spaces. These random fields can be used for simulation, prediction and inference. In particular, linear mixed effects models including random field components can be fitted to data based on computationally efficient sparse matrix representations. Interfaces to the R packages 'INLA' and 'inlabru' are also provided, which facilitate working with Bayesian statistical models on metric graphs. The main references for the methods are Bolin, Simas and Wallin (2024) <doi:10.3150/23-BEJ1647>, Bolin, Kovacs, Kumar and Simas (2023) <doi:10.1090/mcom/3929> and Bolin, Simas and Wallin (2023) <doi:10.48550/arXiv.2304.03190> and <doi:10.48550/arXiv.2304.10372>.

  • Maintainer: David Bolin
  • License: GPL (>= 2)
  • Last published: 2025-05-19