OncoBayes20.9-3 package

Bayesian Logistic Regression for Oncology Dose-Escalation Trials

bind_rows_0

Bind rows of multiple data frames with zero fill

blrm_exnex

Bayesian Logistic Regression Model for N-compounds with EXNEX

blrm_formula_linear

Build a BLRM formula with linear interaction term in logit-space

blrm_formula_saturating

Build a BLRM formula with saturating interaction term in logit-space

blrm_trial

Dose-Escalation Trials guided by Bayesian Logistic Regression Model

critical_quantile

Critical quantile

diagnostic-quantities

Extract Diagnostic Quantities of OncoBayes2 Models

dot-get_strata_group_fct

extracts from a blrmfit object and a given data-set the group and stra...

dot-get_X

Obtain design matrices.

dot-label_index

Utility function to label parameter indices according to factor levels...

dot-validate_group_stratum_nesting

Test if each group is assigned to exactly 1 stratum. Error otherwise.

draws-OncoBayes2

Transform blrmfit or blrm_trial to draws objects

example_model

Runs example models

example-combo2_trial

Two-drug combination example using BLRM Trial

example-combo2

Two-drug combination example

example-combo3

Three-drug combination example

example-single-agent

Single Agent Example

lodds

Logit (log-odds) and inverse-logit function.

log_inv_logit

Numerically stable summation of log inv logit

log_mean_exp

Numerically stable mean of logs

nsamples.blrmfit

Return the number of posterior samples

OncoBayes2

OncoBayes2

plot_blrm

Plot a fitted model

posterior_interval.blrmfit

Posterior intervals

posterior_linpred.blrmfit

Posterior of linear predictor

posterior_predict.blrmfit

Posterior of predictive

pp_data

Internal function to simulate from the posterior new parameter draws

predictive_interval.blrmfit

Posterior predictive intervals

prior_summary.blrmfit

Summarise model prior

summary.blrm_trial

Summarise trial

summary.blrmfit

Summarise model results

update.blrm_trial

Update data and/or prior of a BLRM trial

update.blrmfit

Update data of a BLRM analysis

Bayesian logistic regression model with optional EXchangeability-NonEXchangeability parameter modelling for flexible borrowing from historical or concurrent data-sources. The safety model can guide dose-escalation decisions for adaptive oncology Phase I dose-escalation trials which involve an arbitrary number of drugs. Please refer to Neuenschwander et al. (2008) <doi:10.1002/sim.3230> and Neuenschwander et al. (2016) <doi:10.1080/19466315.2016.1174149> for details on the methodology.

  • Maintainer: Sebastian Weber
  • License: GPL (>= 3)
  • Last published: 2025-04-25