ctsem3.10.4 package

Continuous Time Structural Equation Modelling

ctACF

Continuous Time Autocorrelation Function (ctACF)

ctACFresiduals

Calculate Continuous Time Autocorrelation Function (ACF) for Standardi...

ctAddSamples

Sample more values from an optimized ctstanfit object

ctCheckFit

Visual model fit diagnostics for ctsem fit objects.

ctChisqTest

Chi Square test wrapper for ctStanFit objects.

ctCollapse

ctCollapse Easily collapse an array margin using a specified function.

ctDeintervalise

ctDeintervalise

ctDensity

ctDensity

ctDiscretiseData

Discretise long format continuous time (ctsem) data to specific timest...

ctDocs

Get documentation pdf for ctsem

ctExample2level

ctExample2level

ctExtract

Extract samples from a ctStanFit object

ctFit

ctFit function placeholder

ctFitAuto

ctFitAuto

ctFitAutoGroupModel

ctFitAutoGroupModel

ctFitCovCheck

Visual model-fit diagnostics for ctsem fits, optionally split by the m...

ctFitMultiModel

Fit and summarise a list of ctsem models

ctGenerate

ctGenerate

ctIndplot

ctIndplot

ctIntervalise

Converts absolute times to intervals for wide format ctsem panel data

ctKalman

ctKalman

ctLongToWide

ctLongToWide Restructures time series / panel data from long format to...

ctLOO

K fold cross validation for ctStanFit objects

ctModel

Define a ctsem model

ctModelHigherOrder

Raise the order of a ctsem model object of type 'omx'.

ctModelLatex

Generate and optionally compile latex equation of subject level ctsem ...

ctPlotArray

Plots three dimensional y values for quantile plots

ctPoly

Plots uncertainty bands with shading

ctPostPredData

Create a data.table to compare data generated from a ctsem fit with th...

ctPostPredPlots

Create diagnostic plots to assess the goodness-of-fit for a ctsem mode...

ctPredictTIP

ctPredictTIP

ctResiduals

Extract Standardized Residuals from a ctsem Fit

ctsem-package

ctsem

ctStanContinuousPars

ctStanContinuousPars

ctStanDiscretePars

ctStanDiscretePars

ctStanDiscreteParsPlot

ctStanDiscreteParsPlot

ctStanFit

ctStanFit

ctStanFitUpdate

Update a ctStanFit object

ctStanGenerate

Generate data from a ctstanmodel object

ctStanGenerateFromFit

Add a $generated object to ctstanfit object, with random data genera...

ctStanKalman

Get Kalman filter estimates from a ctStanFit object

ctStanModel

Convert a frequentist (omx) ctsem model specification to Bayesian (Sta...

ctStanParnames

ctStanParnames

ctStanPlotPost

ctStanPlotPost

ctStanPostPredict

Compares model implied density and values to observed, for a ctStanFit...

ctStanSubjectPars

Extract an array of subject specific parameters from a ctStanFit objec...

ctStanTIpredeffects

Get time independent predictor effect estimates

ctStanUpdModel

Update an already compiled and fit ctStanFit object

ctWideNames

ctWideNames sets default column names for wide ctsem datasets. Primari...

ctWideToLong

ctWideToLong Convert ctsem wide to long format

inv_logit

Inverse logit

log1p_exp

log1p_exp

plot.ctFitCovCheck

plot.ctFitCovCheck

plot.ctKalmanDF

Plots Kalman filter output from ctKalman.

plot.ctStanFit

plot.ctStanFit

plot.ctStanModel

Prior plotting

plotctACF

Plot an approximate continuous-time ACF object from ctACF

sdpcor2cov

sdcor2cov

stan_checkdivergences

Analyse divergences in a stanfit object

stan_reinitsf

Quickly initialise stanfit object from model and data

stan_unconstrainsamples

Convert samples from a stanfit object to the unconstrained scale

standatact_specificsubjects

Adjust standata from ctsem to only use specific subjects

stanoptimis

Optimize / importance sample a stan or ctStan model.

stanWplot

Runs stan, and plots sampling information while sampling.

summary.ctStanFit

summary.ctStanFit

test_isclose

Tests if 2 values are close to each other

Hierarchical continuous (and discrete) time state space modelling, for linear and nonlinear systems measured by continuous variables, with limited support for binary data. The subject specific dynamic system is modelled as a stochastic differential equation (SDE) or difference equation, measurement models are typically multivariate normal factor models. Linear mixed effects SDE's estimated via maximum likelihood and optimization are the default. Nonlinearities, (state dependent parameters) and random effects on all parameters are possible, using either max likelihood / max a posteriori optimization (with optional importance sampling) or Stan's Hamiltonian Monte Carlo sampling. See <https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf> for details. See <https://osf.io/preprints/psyarxiv/4q9ex_v2> for a detailed tutorial. Priors may be used. For the conceptual overview of the hierarchical Bayesian linear SDE approach, see <https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling>. Exogenous inputs may also be included, for an overview of such possibilities see <https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models> . <https://cdriver.netlify.app/> contains some tutorial blog posts.