SpatialDDLS1.0.3 package

Deconvolution of Spatial Transcriptomics Data Based on Neural Networks

barErrorPlot

Generate bar error plots

barPlotCellTypes

Bar plot of deconvoluted cell type proportions

blandAltmanLehPlot

Generate Bland-Altman agreement plots between predicted and expected c...

calculateEvalMetrics

Calculate evaluation metrics on test mixed transcriptional profiles

cell.names

Get and set cell.names slot in a PropCellTypes object

cell.types

Get and set cell.types slot in a DeconvDLModel object

corrExpPredPlot

Generate correlation plots between predicted and expected cell type pr...

createSpatialDDLSobject

Create a SpatialDDLS object

deconv.spots

Get and set deconv.spots slot in a SpatialExperiment object

DeconvDLModel-class

The DeconvDLModel Class

deconvSpatialDDLS

Deconvolute spatial transcriptomics data using trained model

distErrorPlot

Generate box or violin plots showing error distribution

estimateZinbwaveParams

Estimate parameters of the ZINB-WaVE model to simulate new single-cell...

features

Get and set features slot in a DeconvDLModel object

genMixedCellProp

Generate training and test cell type composition matrices

getProbMatrix

Getter function for the cell composition matrix

installTFpython

Install Python dependencies for SpatialDDLS

interGradientsDL

Calculate gradients of predicted cell types/loss function with respect...

loadSTProfiles

Loads spatial transcriptomics data into a SpatialDDLS object

loadTrainedModelFromH5

Load from an HDF5 file a trained deep neural network model into a `Spa...

method

Get and set method slot in a PropCellTypesobject

mixed.profiles

Get and set mixed.profiles slot in a SpatialExperiment object

model

Get and set model slot in a DeconvDLModelobject

plotDistances

Plot distances between intrinsic and extrinsic profiles

plotHeatmapGradsAgg

Plot a heatmap of gradients of classes / loss function wtih respect to...

plots

Get and set plots slot in a PropCellTypesobject

plotSpatialClustering

Plot results of clustering based on predicted cell proportions

plotSpatialGeneExpr

Plot normalized gene expression data (logCPM) in spatial coordinates

plotSpatialProp

Plot predicted proportions for a specific cell type using spatial coor...

plotSpatialPropAll

Plot predicted proportions for all cell types using spatial coordinate...

plotTrainingHistory

Plot training history of a trained SpatialDDLS deep neural network mod...

preparingToSave

Prepare SpatialDDLS object to be saved as an RDA file

prob.cell.types

Get and set prob.cell.types slot in a SpatialExperiment object

prob.matrix

Get and set prob.matrix slot in a PropCellTypes object

project

Get and set project slot in a SpatialExperiment object

PropCellTypes-class

The PropCellTypes Class

saveRDS

Save SpatialExperiment objects as RDS files

saveTrainedModelAsH5

Save a trained SpatialDDLS deep neural network model to disk as an H...

set.list

Get and set set.list slot in a PropCellTypes object

set

Get and set set slot in a PropCellTypesobject

showProbPlot

Show distribution plots of the cell proportions generated by `genMixed...

simMixedProfiles

Simulate training and test mixed spot profiles

simSCProfiles

Simulate new single-cell RNA-Seq expression profiles using the ZINB-Wa...

single.cell.real

Get and set single.cell.real slot in a SpatialExperiment object

single.cell.simul

Get and set single.cell.simul slot in a SpatialExperiment object

spatial.experiments

Get and set spatial.experiments slot in a SpatialExperiment object

SpatialDDLS-class

The SpatialDDLS Class

SpatialDDLS-package

SpatialDDLS: Deconvolution of Spatial Transcriptomics Data Based on Ne...

SpatialDDLS-Rpackage

SpatialDDLS: an R package to deconvolute spatial transcriptomics data ...

spatialPropClustering

Cluster spatial data based on predicted cell proportions

test.deconv.metrics

Get and set test.deconv.metrics slot in a DeconvDLModel object

test.metrics

Get and set test.metrics slot in a DeconvDLModel object

test.pred

Get and set test.pred slot in a DeconvDLModel object

topGradientsCellType

Get top genes with largest/smallest gradients per cell type

trainDeconvModel

Train deconvolution model for spatial transcriptomics data

trained.model

Get and set trained.model slot in a SpatialExperiment object

training.history

Get and set training.history slot in a DeconvDLModel object

zinb.params

Get and set zinb.params slot in a SpatialExperiment object

ZinbParametersModel-class

The Class ZinbParametersModel

zinbwave.model

Get and set zinbwave.model slot in a ZinbParametersModel object

Deconvolution of spatial transcriptomics data based on neural networks and single-cell RNA-seq data. SpatialDDLS implements a workflow to create neural network models able to make accurate estimates of cell composition of spots from spatial transcriptomics data using deep learning and the meaningful information provided by single-cell RNA-seq data. See Torroja and Sanchez-Cabo (2019) <doi:10.3389/fgene.2019.00978> and Mañanes et al. (2024) <doi:10.1093/bioinformatics/btae072> to get an overview of the method and see some examples of its performance.

  • Maintainer: Diego Mañanes
  • License: GPL-3
  • Last published: 2024-10-31