inlabru2.13.0 package

Bayesian Latent Gaussian Modelling using INLA and Extensions

add_mappers

Add component input/latent mappers

as_bru_comp

Conversion methods for bru_comp and bru_comp_list objects

as_bru_mapper

Methods for mapper extraction

as_bru_obs

Conversion methods for bru_obs and bru_obs_list objects

bincount

1D LGCP bin count simulation and comparison with data

bm_aggregate

Mapper for aggregation

bm_collect

Mapper for concatenated variables

bm_const

Constant mapper

bm_factor

Mapper for factor variables

bm_fm_mesh_1d

Mapper for fm_mesh_1d

bm_fm_mesh_2d

Mapper for fm_mesh_2d

bm_fmesher

Mapper for general fmesher function space objects

bm_harmonics

Mapper for cos/sin functions

bm_index

Mapper for indexed variables

bm_linear

Mapper for a linear effect

bm_list

Methods for mapper lists

bm_logsumexp

Mapper for log-sum-exp aggregation

bm_marginal

Mapper for marginal distribution transformation

bm_matrix

Mapper for matrix multiplication

bm_mesh_B

Mapper for basis conversion

bm_multi

Mapper for tensor product domains

bm_pipe

Mapper for linking several mappers in sequence

bm_repeat_indexing

Re-indexing matrix for repeated mappers

bm_repeat

Mapper for repeating a mapper

bm_scale

Mapper for element-wise scaling

bm_shift

Mapper for element-wise shifting

bm_sum

Mapper for adding multiple mappers

bm_summary

mapper object summaries

bm_taylor

Mapper for linear Taylor approximations

bru_call_options

Additional bru options

bru_comp_eval

Evaluate component values in predictor expressions

bru_comp_list

Methods for inlabru component lists

bru_comp

Latent model component construction

bru_compute_linearisation

Compute inlabru model linearisation information

bru_convergence_plot

Plot inlabru convergence diagnostics

bru_env_get

Get access to the internal environment

bru_eval_in_data_context

Evaluate expressions in data contexts

bru_fill_missing

Fill in missing values in Spatial grids

bru_formula_to_bru_obs_code

Convert components to R code

bru_get_mapper

Extract mapper information from INLA model component objects

bru_index

Extract predictor or component index information

bru_info

Methods for bru_info objects

bru_inla.stack.mexpand

Backwards compatibility to handle mexpand for INLA <= 24.06.02

bru_inla.stack.mjoin

Join stacks intended to be run with different likelihoods

bru_input

Obtain component inputs

bru_is_additive

Check for predictor expression additivity

bru_log_bookmark

Methods for bru_log bookmarks

bru_log_message

Add a log message

bru_log_new

Create a bru_log object

bru_log_offset

Position methods for bru_log objects

bru_log_reset

Clear log contents

bru_log

Access methods for bru_log objects

bru_make_stack

Build an inla data stack from linearisation information

bru_mapper_generics

Generic methods for bru_mapper objects

bru_mapper

Constructors for bru_mapper objects

bru_model_mapper_methods

Mapper methods for model objects

bru_model

Create an inlabru model object from model components

bru_obs_methods

Utility functions for bru observation model objects

bru_obs_print

Summary and print methods for observation models

bru_obs

Observation model construction for usage with bru()

bru_options

Create or update an options objects

bru_response_size

Response size queries

bru_safe_inla

Load INLA safely for examples and tests

bru_safe_sp

Check for potential sp version compatibility issues

bru_set_missing

Set missing values in observation models

bru_standardise_names

Standardise inla hyperparameter names

bru_summarise

Summarise and annotate data

bru_timings_plot

Plot inlabru iteration timings

bru_timings

Extract timing information from fitted bru object

bru_transformation

Transformation tools

bru_used_update

Update used_component information objects

bru_used_vars

Extract basic variable names from expression

bru_used

List components used in a model

bru

Convenient model fitting using (iterated) INLA

deltaIC

Summarise DIC and WAIC from lgcp objects.

devel.cvmeasure

Variance and correlations measures for prediction components

eval_spatial

Evaluate spatial covariates

evaluate_effect

Evaluate a component effect

evaluate_model

Evaluate or sample from a posterior result given a model and locations

evaluate_predictor

Evaluate component effects or expressions

expand_labels

Expand labels

extract_property

Extract a summary property from all results of an inla result

generate

Generate samples from fitted bru models

gg.bru_prediction

Geom for predictions

gg.data.frame

Geom for data.frame

gg.fm_mesh_1d

Geom for fm_mesh_1d objects

gg.fm_mesh_2d

Geom for fm_mesh_2d objects

gg.matrix

Geom for matrix

gg.RasterLayer

Geom for RasterLayer objects

gg

ggplot2 geomes for inlabru related objects

gg.sf

Geom helper for sf objects

gg.SpatialGridDataFrame

Geom for SpatialGridDataFrame objects

gg.SpatialLines

Geom for SpatialLines objects

gg.SpatialPixels

Geom for SpatialPixels objects

gg.SpatialPixelsDataFrame

Geom for SpatialPixelsDataFrame objects

gg.SpatialPoints

Geom for SpatialPoints objects

gg.SpatialPolygons

Geom for SpatialPolygons objects

gg.SpatRaster

Geom wrapper for SpatRaster objects

globe

Visualize a globe using RGL

glplot

Render objects using RGL

gorillas

Deprecated alias for sp version of the gorillas dataset

iinla

Iterated INLA

inla_subset_eval

Obtain inla index subset information

inlabru-deprecated

Deprecated functions in inlabru

inlabru-package

inlabru

lgcp

Log Gaussian Cox process (LGCP) inference using INLA

local_testthat

Unit test helpers

materncov.bands

Matern correlation or covariance function approximate credible bands.

mexdolphin

Deprecated alias for sp version of the mexdolphin dataset

multiplot

Multiple ggplots on a page.

parse_inclusion

Parse inclusion of component labels in a predictor expression

pcmatern_B

Make hierarchical mesh basis functions

plot.bru_prediction

Plot prediction using ggplot2

plot.bru

Plot method for posterior marginals estimated by bru

plotsample

Create a plot sample.

point2count

Convert a plot sample of points into one of counts.

predict.bru

Prediction from fitted bru model

reexports

Objects exported from other packages

sample.lgcp

Sample from an inhomogeneous Poisson process

sline

Convert data frame to SpatialLinesDataFrame

spatial.to.ppp

Convert SpatialPoints and boundary polygon to spatstat ppp object

spde.posterior

Posteriors of SPDE hyper parameters and Matern correlation or covarian...

spoly

Convert a data.frame of boundary points into a SpatialPolgonsDataFrame

summary.bru_comp

Summarise components

summary.bru_input

Summarise component inputs

summary.bru_options

Print inlabru options

summary.bru

Summary for an inlabru fit

Facilitates spatial and general latent Gaussian modeling using integrated nested Laplace approximation via the INLA package (<https://www.r-inla.org>). Additionally, extends the GAM-like model class to more general nonlinear predictor expressions, and implements a log Gaussian Cox process likelihood for modeling univariate and spatial point processes based on ecological survey data. Model components are specified with general inputs and mapping methods to the latent variables, and the predictors are specified via general R expressions, with separate expressions for each observation likelihood model in multi-likelihood models. A prediction method based on fast Monte Carlo sampling allows posterior prediction of general expressions of the latent variables. Ecology-focused introduction in Bachl, Lindgren, Borchers, and Illian (2019) <doi:10.1111/2041-210X.13168>.

  • Maintainer: Finn Lindgren
  • License: GPL (>= 2)
  • Last published: 2025-07-09