familiar1.5.0 package

End-to-End Automated Machine Learning and Model Evaluation

aggregate_vimp_table-methods

Aggregate variable importance from multiple variable importance object...

as_data_object-methods

Creates a valid data object from input data.

as_familiar_collection-methods

Conversion to familiarCollection object.

as_familiar_data-methods

Conversion to familiarData object.

as_familiar_ensemble-methods

Conversion to familiarEnsemble object.

coef-methods

Extract model coefficients

create_randomised_groups

Create randomised groups Creates randomised groups, e.g. for tests tha...

dataObject-class

Data object

dot-check_class_level_plausibility

Internal function to test plausibility of provided class levels

dot-check_feature_availability

Internal function to check whether feature columns are found in the da...

dot-check_input_identifier_column

Internal function for checking consistency of the identifier columns

dot-check_input_plot_args

Internal checks on common plot input arguments

dot-check_outcome_type_plausibility

Internal function for checking if the outcome type fits well to the da...

dot-check_plot_splitting_variables

Checks and sanitizes splitting variables for plotting.

dot-check_survival_time_plausibility

Internal function to test plausibility of provided survival times.

dot-finish_data_preparation

Internal function for finalising generic data processing

dot-get_default_sign_size

Internal function for obtaining a default signature size parameter

dot-get_iteration_data

Internal function for creating or retrieving iteration data

dot-impute_outcome_type

Internal imputation function for the outcome type.

dot-load_iterations

Internal function for loading iteration data from the file system

dot-parse_categorical_features

Internal function for setting categorical features

dot-parse_evaluation_settings

Internal function for parsing settings related to model evaluation

dot-parse_experiment_settings

Internal function for parsing settings related to the experimental set...

dot-parse_feature_selection_settings

Internal function for parsing settings related to feature selection

dot-parse_file_paths

Internal function for parsing file paths

dot-parse_general_settings

Internal function for parsing settings that configure various aspects ...

dot-parse_hyperparameter_optimisation_settings

Internal function for parsing settings related to hyperparameter optim...

dot-parse_initial_settings

Internal function for parsing settings required to parse the input dat...

dot-parse_integer_features

Internal function for converting integer features

dot-parse_model_development_settings

Internal function for parsing settings related to model development

dot-parse_preprocessing_settings

Internal function for parsing settings related to preprocessing

dot-parse_setup_settings

Internal function for parsing settings related to the computational se...

dot-plot_permutation_variable_importance

Internal plotting function for permutation variable importance plots

dot-plot_univariate_importance

Internal plotting function for univariate plots

dot-prepare_familiar_data_sets

Prepare familiarData objects for evaluation at runtime.

dot-update_experimental_design_settings

Internal function to check batch assignment to development and validat...

dot-update_initial_settings

Internal check and update of settings related to data set parsing

encapsulate_path

Encapsulate path

experimentData-class

Experiment data

export_all-methods

Extract and export all data.

export_auc_data-methods

Extract and export ROC and Precision-Recall curves.

export_calibration_data-methods

Extract and export calibration and goodness-of-fit tests.

export_calibration_info-methods

Extract and export calibration information.

export_confusion_matrix_data-methods

Extract and export confusion matrices.

export_decision_curve_analysis_data-methods

Extract and export decision curve analysis data.

export_feature_expressions-methods

Extract and export feature expressions.

export_feature_similarity-methods

Extract and export mutual correlation between features.

export_fs_vimp-methods

Extract and export feature selection variable importance.

export_hyperparameters-methods

Extract and export model hyperparameters.

export_ice_data-methods

Extract and export individual conditional expectation data.

export_model_performance-methods

Extract and export metrics for model performance.

export_model_vimp-methods

Extract and export model-based variable importance.

export_partial_dependence_data-methods

Extract and export partial dependence data.

export_permutation_vimp-methods

Extract and export permutation variable importance.

export_prediction_data-methods

Extract and export predicted values.

export_risk_stratification_data-methods

Extract and export sample risk group stratification and associated tes...

export_risk_stratification_info-methods

Extract and export cut-off values for risk group stratification.

export_sample_similarity-methods

Extract and export mutual correlation between features.

export_univariate_analysis_data-methods

Extract and export univariate analysis data of features.

extract_auc_data

Internal function to extract area under the ROC curve information.

extract_calibration_data

Internal function to extract calibration data.

extract_calibration_info

Internal function to extract calibration info from data.

extract_confusion_matrix

Internal function to extract the confusion matrix.

extract_data

Internal function to create a familiarData object.

extract_decision_curve_data

Internal function to extract decision curve analysis data.

extract_dispatcher-familiarEnsemble-familiarDataElement-method

Internal function to dispatch extraction functions.

extract_experimental_setup

Parse experimental design

extract_feature_expression

Internal function to extract feature expressions.

extract_feature_similarity

Internal function to extract the feature distance table.

extract_fs_vimp

Internal function to extract feature selection variable importance.

extract_hyperparameters

Internal function to extract hyperparameters from models.

extract_ice

Internal function to extract data for individual conditional expectati...

extract_model_vimp

Internal function to extract variable importance from models.

extract_performance

Internal function to extract performance metrics.

extract_permutation_vimp

Internal function to extract permutation variable importance.

extract_predictions

Internal function to extract predicted values from models.

extract_risk_stratification_data

Internal function to extract stratification data.

extract_risk_stratification_info

Internal function to extract risk stratification info from data.

extract_sample_similarity

Internal function to extract the sample distance table.

extract_univariate_analysis

Internal function to extract data from a univariate analysis.

familiar

familiar: Fully Automated Machine Learning with Interpretable Analysis...

familiarCollection-class

Collection of familiar data.

familiarData-class

Dataset obtained after evaluating models on a dataset.

familiarDataElement-class

Data container for evaluation data.

familiarEnsemble-class

Ensemble of familiar models.

familiarHyperparameterLearner-class

Hyperparameter learner.

familiarMetric-class

Model performance metric.

familiarModel-class

Familiar model.

familiarNoveltyDetector-class

Novelty detector.

familiarVimpMethod-class

Variable importance method object.

featureInfo-class

Feature information object.

featureInfoParameters-class

Feature information parameters object.

get_class_names-familiarCollection-method

Get outcome class labels

get_data_set_names-familiarCollection-method

Get current name of datasets

get_feature_names-familiarCollection-method

Get current feature labels

get_fs_method_names-familiarCollection-method

Get current feature selection method name labels

get_learner_names-familiarCollection-method

Get current learner name labels

get_risk_group_names-familiarCollection-method

Get current risk group labels

get_vimp_table-methods

Extract variable importance table.

get_xml_config

Create an empty xml configuration file

is.encapsulated_path

Internal test for encapsulated_path

is.waive

Internal test to see if an object is a waiver

outcomeInfo-class

Outcome information object.

plot_auc_precision_recall_curve-methods

Plot the precision-recall curve.

plot_auc_roc_curve-methods

Plot the receiver operating characteristic curve.

plot_calibration_data-methods

Plot calibration figures.

plot_confusion_matrix-methods

Plot confusion matrix.

plot_decision_curve-methods

Plot decision curves.

plot_feature_similarity-methods

Plot heatmaps for pairwise similarity between features.

plot_ice-methods

Plot individual conditional expectation plots.

plot_kaplan_meier-methods

Plot Kaplan-Meier survival curves.

plot_model_performance-methods

Plot model performance.

plot_pd-methods

Plot partial dependence.

plot_permutation_variable_importance-methods

Plot permutation variable importance.

plot_sample_clustering-methods

Plot heatmaps for pairwise similarity between features.

plot_univariate_importance-methods

Plot univariate importance.

plot_variable_importance-methods

Plot variable importance scores of features during feature selection o...

precompute_data_assignment

Pre-compute data assignment

precompute_feature_info

Pre-compute feature information

precompute_vimp

Pre-compute variable importance

predict-methods

Model predictions for familiar models and model ensembles

set_class_names-familiarCollection-method

Rename outcome classes for plotting and export

set_data_set_names-familiarCollection-method

Name datasets for plotting and export

set_feature_names-familiarCollection-method

Rename features for plotting and export

set_fs_method_names-familiarCollection-method

Rename feature selection methods for plotting and export

set_learner_names-familiarCollection-method

Rename learners for plotting and export

set_object_name-familiarData-method

Set the name of a familiarData object.

set_object_name-familiarEnsemble-method

Set the name of a familiarEnsemble object.

set_object_name-familiarModel-method

Set the name of a familiarModel object.

set_risk_group_names-familiarCollection-method

Rename risk groups for plotting and export

summary-methods

Model summaries

summon_familiar

Perform end-to-end machine learning and data analysis

theme_familiar

Familiar ggplot2 theme

train_familiar

Create models using end-to-end machine learning

update_model_dir_path-methods

Updates model directory path for ensemble objects.

update_object-methods

Update familiar S4 objects to the most recent version.

vcov-methods

Calculate variance-covariance matrix for a model

vimpTable-class

Variable importance table

waiver

Create a waiver object

Single unified interface for end-to-end modelling of regression, categorical and time-to-event (survival) outcomes. Models created using familiar are self-containing, and their use does not require additional information such as baseline survival, feature clustering, or feature transformation and normalisation parameters. Model performance, calibration, risk group stratification, (permutation) variable importance, individual conditional expectation, partial dependence, and more, are assessed automatically as part of the evaluation process and exported in tabular format and plotted, and may also be computed manually using export and plot functions. Where possible, metrics and values obtained during the evaluation process come with confidence intervals.

  • Maintainer: Alex Zwanenburg
  • License: EUPL
  • Last published: 2024-09-23